Competitive growth with the USDA-ARS Tropical Agricultural Research Station, Mayagüez, Puerto Rico, in January 1995. The lines range in maturity (100 to 35 days) and height (200 to 30 cm) depending on planting date and latitude. The lines were sterilized in A 59.5±2.6 g kg⁻¹, respectively. In comparison, HA 382 had a stearic acid content of 35.4±3.2 g kg⁻¹ and 29.7±2.0 g kg⁻¹, respectively. In comparison, HA 382 had a stearic acid content of 59.5±2.6 g kg⁻¹.

Seed of these genetic stocks will be maintained by the author and small quantities of seed are available upon request. We ask that appropriate recognition be made if these genetic stocks are used in genetic studies or contribute to the development of new germplasm.

J. F. MILLER* and B. A. VICK (7)

References and Notes
7. USDA-ARS, Northern Crop Science Lab., Fargo, ND 58105. Research supported in part by a grant from the North Dakota Agricultural Product Utilization Commission. Registration by CSSA. Accepted 31 July 1990. *Corresponding author (millerf@fargo.ars.usda.gov).


REGISTRATION OF PARENTAL LINES

Registration of A₉/B₈, Cytoplasmic–Genetic Male-Sterile Sorghum Maturity and Height

Parental Lines

Twenty parental lines of sorghum [Sorghum bicolor (L.) Moench] (Reg. no. PL-260 to PL-279; PI 598084 to PI 598123) were released by the Texas Agricultural Experiment Station in cooperation with the USDA-ARS Tropical Agricultural Research Station, Mayagüez, Puerto Rico, in January 1995. The lines range in maturity (100 to 35 days) and height (200 to 30 cm) depending on planting date and latitude. The lines were sterilized in A₉ cytoplasm to provide genetic resources for determining basic inheritance and physiological patterns for maturity and height within S. bicolor. Parental line designations, other designations, and genotypes for each of the lines are presented in Table 1. These lines and their genotypes were described by Quinby and Karper (5,6) and Quinby (3) and have been used to describe growth and development in sorghum. The maturity genetics of growth and development in sorghum. The maturity of early generation backcrosses of some of these A₉ male-sterile lines were used to study the effects of heterozygosity at the third allele of this germplasm should be indicated whenever it is used for research or breeding purposes. Seed of these parental lines will be maintained by and requests should be directed to the Texas Agricultural Experiment Station, Texas A&M University, Dep. of Soil and Crop Sciences, College Station, TX 77843-2474; the Sorghum Curator, USDA-ARS-TARS, Box 70, Mayagüez, PR 00681 (jdahlberg@ars-grin.gov); or the U.S. National Plant Germplasm System via Internet access to GRIN (http://www.ars-grin.gov/npgs/ or gopher://gopher.ars-grin.gov).

R. F. MILLER*, J. A. DAHLBERG, AND P. W. MORGAN (8)

Published January, 1999