Registration of ‘MN 1301’ Soybean

‘MN 1301’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-397, PI 602593) was developed by the Minnesota Agricultural Experiment Station. It was released in February 1997 because of its high yield compared with other public cultivars of similar maturity.

MN 1301 was derived from an F4 plant selected from the cross M84-492 × M74-498. M84-492 is a selection from the cross A79-136012 × M75-2. A79-136012 has the pedigree Pride ‘B216’ × Land O’ Lakes ‘4102’. Pride B216 has the pedigree ‘Corsoy’ × ‘Wayne’ (1,10). Land O’ Lakes 4102 has the pedigree (‘Mack’ × [Wayne × (‘Clark’ × ‘Adams’)]) × ‘Cutler’ (1,3,4,9,11). M75-2 is a selection from the cross ‘Hodgson’ (4) × [M67-141 × (‘Chippewa’ × ‘Higan’)] (2,4,6). M67-141 has the pedigree Corsoy × Wayne (1,10). M74-498 is a selection from the cross Peterson Px20 × [Hodgson (4) Rps1 × Merit] (5,6,8). The population was advanced by the single-pod bulk method to the F4 generation in Chile and Minnesota. MN 1301 was yield-tested in Minnesota from 1990 through 1996 under the designation M89-936. It was evaluated in Preliminary Test I in 1993 and in Uniform Test I from 1994 through 1996 of the Uniform Soybean Tests, Northern Region (12).

MN 1301 is classified as an early Group I maturity (relative maturity 1.3) averaging ≈3 d later than ‘Lambert’ (7). It is best adapted as a full-season cultivar to latitudes 44° to 46° N. It has indeterminate growth habit, white flowers, gray pubescence and brown pods at maturity. Seeds are yellow, with yellow hila and intermediate seed coat luster. In comparison with Lambert, MN 1301 is 12 cm taller and lodging scores of MN 1301 and Lambert are similar. Seeds of MN 1301 are 4 mg seed⁻¹ heavier, ≈4 g kg⁻¹ lower in protein, and ≈7 g kg⁻¹ lower in oil than seeds of Lambert. MN 1301 is similar in seed quality to Lambert. The iron deficiency chlorosis scores of MN 1301 and Lambert are similar, both being intermediate. MN 1301 has the Rps1 gene for resistance to Phytophthora root rot (caused by Phytophthora sojae J.W. Gerdemann). MN 0301 also appears to be more susceptible to lodging than Agassiz and Lambert.

MN 1301 was released on 15 Feb. 1997 to approved seed growers in Minnesota. Breeder seed of MN 1301 will be maintained by the Minnesota Agricultural Experiment Station. U.S. plant variety protection for MN 1301 is pending (PVP Certificate no. 9800097). Small samples of MN 1301 for research purposes can be obtained from the Minnesota Agricultural Experiment Station for at least 5 years by writing to the corresponding author.

References and Notes

11. Weiss, M.G. 1953. Registration of soybean variety LAND O’ LAKES 4102 (Reg. no. CV-397, PI 602594). Small samples of MN 0301 for research purposes can be obtained from the Minnesota Agricultural Experiment Station. U.S. plant variety protection for MN 0301 is pending (PVP Certificate no. 9800098).

Registration of ‘MN 0301’ Soybean

‘MN 0301’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-396, PI 602594) was developed by the Minnesota Agricultural Experiment Station. It was released in February 1997 because of its high yield, compared with other public cultivars of similar maturity.

MN 0301 was derived from an F4 plant selected from the cross ‘Maple Donovan’ × M82-303 (1). M82-303 is a selection from the cross M70-330 × M68-176. M70-330 is a selection from the cross Peterson Px20 × [Hodgson (4) Rps1 × Merit] (5,6,8). The population was advanced by the single-pod bulk method to the F4 generation in Chile and Minnesota. MN 0301 was yield tested in Minnesota from 1990 through 1996 under the designation M89-936. It was evaluated in Preliminary Test I in 1993 and in Uniform Test I from 1994 through 1996 of the Uniform Soybean Tests, Northern Region (8).

MN 0301 was released on 15 Feb. 1997 to approved seed growers in Minnesota. Breeder seed of MN 0301 will be maintained by the Minnesota Agricultural Experiment Station. U.S. plant variety protection for MN 0301 is pending (PVP Certificate no. 9800097). Small samples of MN 0301 for research purposes can be obtained from the Minnesota Agricultural Experiment Station for at least 5 years by writing to the corresponding author.

J. H. ORF* AND R. L. DENNY (13)