were planted in hill plots spaced 1.0 m apart in all directions, and alternated with hill plots containing S_0 seed from the second intermating. Twelve seeds were planted in each hill plot. The population was planted in isolation separated from other soybean plants by at least 15.2 m of bare ground. A hive of honey bees (*Apis mellifera* L.) was maintained nearby to facilitate pollen transfer and obtain good seed set on male-sterile plants. The S_0 seed from the third intermating was harvested from 63 individual male-sterile (ms_2ms_2) plants.

Selfed seed from male-fertile plants of the third intermating of Cycle 0 were harvested in bulk and placed in cold storage ($3Ms_2Ms_2;2Ms_2ms_2;1ms_2ms_2$). The bulk was planted in isolation for intermating. Seeds from male-sterile plants were harvested in bulk, and should provide S_0 seeds in a frequency of $4Ms_2ms_2;1ms_2ms_2$. This seed will be distributed by the corresponding author until the supply is exhausted. After harvest of the male-sterile plants, selfed seeds from the remaining fertile plants (Ms_2ms_2) were harvested in bulk. The harvested seeds should provide a frequency of $7Ms_2Ms_2;2Ms_2ms_2;1ms_2ms_2$. This is the seed that will be deposited in the germplasm collection and provided to researchers.

The SGI1E3 population has been subjected to recurrent selection for increased seed size at the University of Nebraska. The base population is phenotypically diverse for seed yield and seed weight, as well as other plant and seed traits. The pedigree diversity of the SGI1E3 population and the different origins of the PI parents should also provide adequate genetic diversity for long-term improvement.

Registration of PR9443-4 Dry Bean Germplasm Resistant to Bean Golden Mosaic, Common Bacterial Blight, and Rust

PR9443-4 (Reg. no. GP-191, PI 606251) was developed and released by the Puerto Rico Agricultural Experiment Station and the USDA-ARS in 1998 as a multiple disease resistant light red kidney bean (*Phaseolus vulgaris* L.) germplasm. PR9443-4 has resistance to bean golden mosaic (BGMV), rust [caused by Uromyces appendiculatus (Pers.:Pers.) Unger var. appendiculatus], and common bacterial blight [caused by *Xanthomonas axonopodis* pv. *phaseoli* Starr & Garces 1950 emend. Vauterin et al. 1995; syn. *X. campestris* pv. *phaseoli* (Smith) Dye].

PR9443-4 was derived from a bulk of individual F_3 plant selections from the cross 'T969-2/DOR303'. T969-2 is a dark red kidney breeding line from the Michigan State University bean breeding program. DOR303 is a BGMV-resistant light red kidney breeding line from the International Center for Tropical Agriculture (CIAT). Crosses, field selections and evaluations were made at the Isabela Substation in Puerto Rico. The F_1 generation was advanced to joint hybrid seed development. The SGI1E3 population is phenotypically diverse for seed yield and seed weight, as well as other plant and seed traits. The pedigree diversity of the SGI1E3 population and the different origins of the PI parents should also provide adequate genetic diversity for long-term improvement.

A sample of up to 750 seeds for research purposes may be obtained from the corresponding author for at least 5 years following the date of this publication. Appropriate credit should be given when this germplasm contributes to research or development of new cultivars.

G.L. GRAEF* AND J.E. SPECHT (5)

References and Notes

5. Dep. of Agronomy, Univ. of Nebraska, Lincoln. Contribution from the Nebraska Agric. Exp. Stn., Jr. Project 12-255 and 12-194. The research was supported by the Nebraska Soybean Board. Registration Feb. 1999. *Corresponding author (ggraef1@unl.edu).