good turf quality in trials throughout the USA. It has exhibited good resistance to rhizoctonia blight (caused by *Rhizoctonia solani* Kühn), dollar spot (caused by *Sclerotinia homoeocarpa* F.T. Bennett), net blotch [caused by *Drechslera dictyoides* (Drechs.) Shoemaker] and pink snow mold and fusarium patch [caused by *Microdochium nivale* (Fr.) Samuels & I. C. Hallett]. It has also shown moderate resistance to gray leaf spot [caused by *Pyricularia grisea* (Cooke) Sacc.] (2). Jaguar 3 has exhibited good summer turf performance in North Carolina.

Jaguar 3 was developed for turf uses including sports fields, golf course roughs, and lawns. It should perform well in areas where tall fescue is adapted as a monostand, in blends with other turf-type tall fescues, and in mixtures with up to 5% Kentucky bluegrass (*Poa pratensis* L.).

Seed propagation of Jaguar 3 is limited to two generations of increase from Breeder seed: one generation each of Foundation and Certified. Pure Seed Testing, Inc., maintains Breeder seed of Jaguar 3 in Oregon. United States plant variety protection of Jaguar 3 has been applied for (PVP Certificate no. 9400176).

CROP REGISTRATIONS

References and Notes

3. C.A. Rose-Fricker, Pure Seed Testing, Inc., P.O. Box 449, Hubbard, OR 97032; M.L. Fraser, Pure Seed Testing, Inc., P.O. Box 176, Rolesville, NC 27571; W.A. Meyer and C.R. Funk, Plant Science Dep., New Jersey Agric. Exp. Stn., Cook College, Rutgers Univ., P.O. Box 231, New Brunswick, NJ 08903; J. Zajac, Zajac Performance Seeds, 33 Sicomac Rd., N. Haledon, NJ 07508. Registration by CSSA. Accepted 31 May 1999. *Corresponding author (mlfraser@aol.com).*

The New Jersey Agricultural Experiment Station, the U.S. Golf Association, and Golf Course Superintendents Association of American Research Fund supported some of this work. Sincere appreciation is expressed to Kevin Morris, Robert Shearman, and all other participants in the National Turfgrass Evaluation Program for their assistance in the testing of Jaguar 3.

Registration of ‘Shademaster’ Strong Creeping Red Fescue

‘Shademaster’ strong creeping red fescue (*Festuca rubra* L. var. *rubra*) (Reg. no. CV-75, PI 601706) was released by Pure Seed Testing, Inc., Hubbard, OR, in September 1987. Shademaster is an advanced-generation synthetic cultivar derived from the progenies of nine plants. The first Certified seed was produced in 1988. Shademaster was tested under the designation PST-433.

Shademaster is a low-growing, turf-type strong creeping red fescue that produces an attractive, dense turf with a medium-dark-green color. It has shade tolerance and good turf quality under moderate or low maintenance conditions. Shademaster was one of several cultivars developed for turf uses including lawns, cemeteries, and golf course roughs. It should perform well in temperate regions as a monostand or in mixtures with other fine-leaved fescues (spp.).

Seed production of Shademaster is limited to two generations of increase from Breeder seed: one each of Foundation and Certified. Pure Seed Testing, Inc., maintains breeder seed of Shademaster in Oregon. U.S. plant variety protection of Shademaster strong creeping red fescue has been applied for (PVP Certificate no. 8900241).

CRYSTAL A. ROSE-FRICKER, MELODEE L. FRASER,* AND WILLIAM A. MEYER (1)

References and Notes

1. C.A. Rose-Fricker, Pure Seed Testing, Inc., P.O. Box 449, Hubbard, OR 97032; M.L. Fraser, Pure Seed Testing, Inc., Rolesville, NC 27571; W.A. Meyer, Plant Seed Processing Lab, New Jersey Agric. Exp. Stn., Cook College, Rutgers Univ., P.O. Box 231, New Brunswick, NJ 08903. Registration accepted 31 May 1999. *Corresponding author (mlfraser@aol.com).*

Registration of ‘Knowles’ Meadowfoam

‘Knowles’ meadowfoam (*Limnanthes alba* Knowles) (Reg. no. CV-10, PI 604600) was developed and released by Pure Seed Testing, Inc., Hubbard, OR, in December, 1998. ‘Knowles’ was increased in an isolated field in 1994-1995. ‘Knowles’ meadowfoam is named for Paul F. Knowles (deceased), a renowned oilseed breeder and pioneer in the development of new oilseeds. The experimental designation for ‘Knowles’ was OSU-EXP-OMF69. Knowles was increased in an isolated spaced plant nursery in 1991-1992. These families were field tested in 1992-1993 and ranked for seed yield and seed oil concentration. The two highest yielding families were field tested in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of OMF58–50, OMF58–10 and OMF58–156 were selected. Knowles was developed by combining 70% UC-Bulk, 15% Mermaid, and 15% Floral in an isolated field in 1990-1991. This nursery was planted by combining 70% UC-Bulk, 15% Mermaid, and 15% Floral in an isolated field in 1990-1991. Seed of 244 half-sib families was produced in 1991-1992. These families were field tested in 1992-1993 and ranked for seed yield and seed oil concentration. The two highest yielding families were field tested in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994. Breeder seed of each of the selected families and increasing seed of the bulk was harvested. Seed of 244 half-sib families was produced under cages with honeybees in 1993-1994.