It was jointly released by CLIMA and Agriculture Western Australia in August 1998.

Cassab was derived from propagation of a single plant selection from the accession ILL7200 obtained from the International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria. ILL7200 is a selection (FLIP92-35L) from a cross made at ICARDA in 1985 between ILL5690 (ex-ICARDA) and ILL5722 (ex-ICARDA; released in Australia as ‘Digger’). ILL5690 was selected from the cross of ILL149 (Turkey) × ILL321 (Hungary), and ILL5722 was selected from the cross of ILL883 (Iran) with ILL470 (Syria).

In 1995, ILL7200 was screened for suitability to Western Australian conditions at the Dryland Institute, Merredin, Western Australia (WA) in a single row plot. Plants were selected from this row for uniformity and performance characteristics to develop Cassab. Further selection and multiplication was carried out at the Cunderdin Agricultural College WA and in New Zealand in 1996 and 1997.

Cassab was tested in more than 30 comparative and agronomic trials at various regional locations in WA, South Australia, Victoria, New South Wales and Queensland between 1996 and 1998. It outyielded all cultivars tested at most locations in southern Australia. It flowers earlier than all cultivars tested, beginning at about 90 d after sowing, compared with 93 d for Digger. On average, Cassab produces 10 to 15% greater yield than Digger in WA. Cassab is of similar height and quality to Digger. It shows moderate field resistance to fungal disease (caused by *Ascochyta lentis* Vassiljevskiy) and is similar to Digger. The plant type is erect, tall and compact with a slender stem. Stem anthocyanins are absent or weak. Leaflets are medium green, medium length (14 mm), alternate and have an oval shape. There are approximately 13 leaflets per leaf. The rachis length is medium (34 mm) and the tendril length is short-medium (14 mm). There are usually three flowers per peduncle that are white with purple veins. The pods are bi-valve, rhomboid with two ovules. The seed is biconvex with uniform reddish-brown testa, red cotyledons, and large seed size (3.92 g 100^-1^ seeds).

Seed of Cassab is maintained and can be obtained for research purposes through the Germplasm Improvement Program, CLIMA, Nedlands, Western Australia, 6009.

K.H.M. Siddique* (1)

References and Notes

Published in Crop Sci. 40:1198-1199 (2000).

Registration of ‘Chalus’ *Lathyrus cicera* L.

‘Chalus’ *Lathyrus cicera* L. (Reg. no. CV-175, PI 612242) was developed by the Centre for Legumes in Mediterranean Agriculture (CLIMA), germplasm evaluation team Western Australia (WA) and Agriculture Western Australia. It is a high yielding and high quality *Lathyrus cicera* cultivar suitable for low and medium rainfall areas of Australia. It was jointly released by CLIMA and Agriculture Western Australia in August 1998.

Chalus was selected from the line IFLA 1279 supplied by the International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria, and selected for adaptation to Western Australian conditions and low concentration of the neurotoxin 3-(N-oxalyl)-L-2,3-diamino propionic acid (ODAP) in the seed, at Northam, WA, in 1994. Plants were selected from this single plot for uniformity and multiplied in isolation to ensure uniformity for an additional three generations (1995, 1996, and 1997). Chalus was tested in regional trials in WA from 1995 to 1998 for stability of yield and ODAP concentration (1). Chalus was also tested in regional trials in South Australia, Victoria, and New South Wales in 1995, 1996, and 1997.

Chalus yielded on average 5% more than ‘Lath-BC’ in 15 trial sites across southern Australia. At dry sites within WA, its average yield has been equivalent to or greater than *Psamn sativum* L. cv ‘Dundale’. Chalus flowers 4 to 6 d earlier than Lath-BC, and about 20 d later than Dundale. Chalus finishes flowering before Dundale and has rapid seed filling. Maturity is reached at approximately the same time as Dundale. Chalus is not susceptible to black spot disease [caused by *Mycosphaerella pinoides* (Berk. & Blox.) Vestergr.] of *Psamn sativum*. Bean Yellow Mosaic Virus has been observed to infect Chalus but no other diseases have been recorded in Australia. As Chalus is resistant to blackspot of *Psamn sativum*, it can be used as an alternative legume to widen *Psamn sativum* rotations where blackspot is a serious problem.

The neurotoxin ODAP is present at high concentrations (>1.35%) in some *Lathyrus* species and heavy consumption can cause paralysis or *Lathyrism* in humans and animals. The ODAP concentration in the seed of Chalus has been shown to be consistently low (0.09%), in comparison with Lath-BC (0.16%). Average seed weight is 66 mg, compared with 55 mg for Lath-BC. Protein concentration is approximately 27% and lysine concentration is 6.1 g/16 g N.

Chalus can be used as a multipurpose crop for direct grazing, hay or silage production, green manuring, or grain production. Feeding studies of Chalus/grain mixtures showed that pigs have equivalent growth as from a standard soybean-based diet (2). Preliminary work with poultry, sheep, and cattle indicate good performance with Chalus as a protein source.

Seed of Chalus was released publicly to a number of growers in Western Australia, South Australia, and Victoria in 1998. Breeder seed of Chalus will be maintained by CLIMA. Basic seed will be produced and distributed by Agriculture Western Australia. Seed of Chalus can be obtained for research purposes through the Germplasm Improvement Program, CLIMA, Nedlands, Western Australia, 6009.

C.D. Hanbury and K.H.M. Siddique (3)

References and Notes
3. C.D. Hanbury, CLIMA, University of Western Australia, Nedlands 6907, Australia, and K.H.M. Siddique, Agriculture Western Australia, Locked Bag No. 4, Bentley Delivery Centre 6983, Australia. Registration by CSSA. Accepted 31 Jan. 2000. *Corresponding author (chanbury@agric.wa.gov.au).

Published in Crop Sci. 40:1199 (2000).

Registration of ‘Cumra’ Lentil

‘Cumra’ lentil (*Lens culinaris* L.) (Reg. no. CV-10, PI 612243) was developed by the Centre for Legumes in Mediterranean Agriculture (CLIMA), germplasm evaluation team, Western Australia (WA) and Agriculture Western Australia.