were excluded from ARS-1221, but some tetraploid genotypes may naturally occur in source seeds from wild populations. In autumn 1994, approximately 21 plants each of 85 accessions reported by the Genetic Resource Information Network to be \textit{L. uliginosus} were grown in the greenhouse and evaluated for morphologic characteristics to verify taxonomic identification (1). Those accessions that did not have leaf morphology, seed size, or hollow-stem characteristics consistent with \textit{L. uliginosus} were excluded. In September 1995, approximately 1700 source plants were transplanted 0.5 m apart, into 14 rows spaced 1 m apart and 20 m long. The plants flowered at a similar time and were interpollinated by two colonies of honeybees (\textit{Apis mellifera} L.). In July 1995, uniform pod set was observed among all of the plants, so the seeds were harvested en mass by swathing the plants into rows and then harvesting with a plot-size combine. The seeds were cleaned and bulked to form Cycle 1 seed. In autumn 1997, 2000 randomly selected Cycle 1 seed was planted and grown in pots in the greenhouse. The plants in the pots were moved to the field in spring 1998 and watered as needed. The plants flowered at relatively similar times and were pollinated as above. Cycle 2 seed was obtained from approximately 8 to 10 umbels that were collected from each plant and bulked, and the seeds threshed and cleaned. Cycle 2 seed was designated as ARS-1221.

No selection was practiced in any cycle. The source materials were intercrossed through two cycles to increase the frequency of new gene combinations, and to provide a base germplasm for selection of new cultivars. The merit of ARS-1221 is its broad genetic base that has been compiled into a single source. Such enhanced germplasm is important because it will allow plant breeders to utilize the diversity of the NPGS collection without having to evaluate all accessions. Fifteen grams of ARS-1221 are available to each applicant upon written request to the corresponding author for as long as supplies last. It is requested that this source of germplasm be appropriately recognized if it contributes to the development of a cultivar or germplasm or is used for other research purposes.

\textbf{J.J. Steiner* and P.R. Beuselinck (2)}

References and Notes

1. Evaluation of source materials supported in part by a grant from the Clover and Special Purpose Legume Crop Germplasm Committee.
2. J.J. Steiner, USDA-ARS, Nati. Forage Seed Production Res. Ctr., 3450 SW Campus Way, Corvallis, OR 97331; P.R. Beuselinck, USDA-ARS, Plant Genetics Res. Unit, University of Missouri, Columbia, MO 65211. Registration by CSSA. Accepted 31 Dec. 1999. *Corresponding author (steinerj@ucr.ornst.edu).

Published in Crop Sci. 40:1204–1205 (2000).

Registration of ARS-1207 Narrow Leaf Trefoil Germplasm

ARS-1207 (Reg. no. GP-197, PI 608022) narrow leaf trefoil (\textit{Lotus glaber} Mill. formerly \textit{L. tenuis} Waldst. et Kit.) germplasm was developed and released 13 April 1999 by the USDA-ARS in cooperation with the Oregon, Idaho, and Washington Agricultural Experiment Stations.

ARS-1207 is the seed resulting from two cycles of intercrossing plants that trace to 38 foreign and three domestic accessions. One domestic and the 38 foreign introductions were originally collected in or acquired from Australia, Czech Republic, France, Greece, Hungary, Italy, Kazakhstan, the former Soviet Union, Spain, Turkey, and Maryland, USA, and obtained from the USDA National Plant Germplasm System (NPGS) collection holdings available before 1994. The two other domestic naturalized accessions were collected by the authors near Half Moon Bay and Visalia, CA, USA.

In autumn 1994, approximately 21 plants each of 54 accessions reported by the Genetic Resource Information Network to be \textit{L. glaber} (formerly \textit{L. tenuis} Waldst. et Kit.) were grown in the greenhouse and evaluated for morphologic characteristics to verify taxonomic identification (1). Any accession that exhibited autogamy or which did not have \textit{L. glaber} leaf morphologic features was excluded. In September 1995, approximately 860 source plants were transplanted 0.5 m apart, into 14 rows spaced 1 m apart and 10 m long. The plants flowered at similar times and were interpollinated by two colonies of honeybees (\textit{Apis mellifera} L.). In late-June 1995, uniform pod set was observed among all of the plants, so the seeds were harvested en mass by swathing the plants into rows and then harvesting with a plot-size combine. The seeds were cleaned and bulked to form Cycle 1 seeds. In autumn 1997, 2000 randomly selected Cycle 1 seed was planted and grown in pots in the greenhouse. The plants in the pots were moved to the field in spring 1998 and watered as needed. The plants flowered at relatively similar times and were pollinated as above. Cycle 2 seed was obtained from approximately six umbels that were collected from each plant and bulked, and the seeds threshed and cleaned. Cycle 2 seed was designated as ARS-1207.

No selection was practiced in any cycle. The source materials were intercrossed through two cycles to increase the frequency of new gene combinations and to provide a base germplasm for selection of new cultivars. The merit of ARS-1207 is its broad genetic base that has been compiled into a single source. Such enhanced germplasm is important because it will allow plant breeders to utilize the diversity of the NPGS collection without having to evaluate all accessions. Fifteen grams of ARS-1207 are available to each applicant upon written request to the corresponding author for as long as supplies last. It is requested that this source of germplasm be appropriately recognized if it contributes to the development of a cultivar or germplasm or is used for other research purposes.

\textbf{J.J. Steiner* and P.R. Beuselinck (2)}

References and Notes

1. Evaluation of source materials supported in part by a grant from the Clover and Special Purpose Legume Crop Germplasm Committee.
2. J.J. Steiner, USDA-ARS, Nati. Forage Seed Production Res. Ctr., 3450 SW Campus Way, Corvallis, OR 97331; P.R. Beuselinck, USDA-ARS, Plant Genetics Res. Unit, University of Missouri, Columbia, MO 65211. Registration by CSSA. Accepted 31 Dec. 1999. *Corresponding author (steinerj@ucr.ornst.edu).

Published in Crop Sci. 40:1205 (2000).

Registration of SR95 Sugarbeet Germplasm with Smooth Root

Sugarbeet (\textit{Beta vulgaris L.}) germplasm SR95 (Reg. no. GP-208, PI 603947) was developed by the USDA-ARS and the Michigan Agricultural Experiment Station, in cooperation with the Beet Sugar Development Foundation, and released in December 1998. SR95 has excellent root smoothness, equivalent to SR87 (3), and at least 105% of the sucrose concentration of SR87. SR95 has smoother roots than SR94 (PI 598076), which was released earlier from related parentage (1). The smoothroot characteristic reduces soil quantities taken from the field on harvested beets, as well as subsequent soil disposal costs as industrial waste at the sugar factory (3). Smoothroot sugarbeets are prospective components of redesigned sugarbeet harvesting and piling systems that reduce bruising and...