During three consecutive years 1997 through 1999 when grown without any pesticides (Branch and Fletcher, 2001), Georgia-01R was found to have comparable or better resistance to early and late leafspots [caused by Cercospora arachidicola Horii and Cercosporidium personatum (Berk. & Curt.) Deighton, respectively] and TSWV as ‘Southern Runner’ (Gorbet et al., 1987) and ‘Florida MDR 98’ (Gorbet and Shokes, 2002). Georgia-01R also produced significantly higher yields and dollar values without pesticides as compared to these other multiple resistant cultivars, and when grown with recommended pesticides, Georgia-01R was found to be comparable to ‘Georgia Green’ (Branch, 1996) in TSWV resistance, pod yield, total sound mature kernel grade, and dollar value return per hectare. Preliminary field trials also showed Georgia-01R to have moderate resistance to white mold or stem rot (caused by Sclerotium rolfsii Sacc.), Cylindrocladium black rot (caused by Cylindrocladium parasiticum Crous, Wingfield & Allenas), leafhoppers (Empoasca fabae Harris), and/or leaf scorch (caused by Leptosphaerulina crassiaca Sachet).

Georgia-01R has a spreading runner growth habit, tan testa color, and late maturity similar to Southern Runner, Florida MDR 98, and ‘C-99R’ (Gorbet and Shokes, 2002). Maturity is approximately 2 to 3 wk later for Georgia-01R than for Georgia Green in southern Georgia.

Georgia-01R has dark green foliage, prominent mainstem, and alternate branching pattern. Georgia-01R also has a significantly greater pod bulk density (346 vs. 316 kg m⁻³), more pronounced pod reticulation and constriction, approximately 10% more jumbo runner seed (riding a 8.33- by 19.05-mm slotted screen), significantly lower oil content (46 vs. 49%), and significantly higher oleic to linoleic fatty acid ratio (3.1 vs. 2.3) than C-99R. However, it is not significantly different from C-99R in number of sound mature seed count, blanchability, protein content, and roasted peanut flavor scores.

U.S. Plant Variety Protection is pending for Georgia-01R. Breeder seed of Georgia-01R will be maintained by the University of Georgia, Coastal Plain Experiment Station at Tifton. Foundation seed stock will be available from the Georgia Seed Development Commission, 2420 S. Milledge Avenue, Athens, GA 30605.

W.D. Branch*

References


Dep. of Crop and Soil Sciences, Univ. of Georgia, Coastal Plain Exp. Stn., Tifton, GA 31993-0748. Registration by CSSA. Accepted 31 Mar. 2002. *Corresponding author (wdbranch@tifton.cpes.peachnet.edu).


Registration of ‘AU Merit’ Hairy Vetch

‘AU Merit’ hairy vetch (Vicia villosa Roth.) (Reg. no. CV-9, PI 619630) was developed and released in 1999 by Auburn University and the Alabama Agricultural Experiment Station. This cultivar was released because it has a consistently high forage yield and is early flowering.

AU Merit was derived from accession PI 206493 obtained from the Plant Genetic Resources Conservation Unit (S-9), National Plant Germplasm System. In the Fall of 1994, a breeding nursery consisting of 1500 plants was established in Tallassee, AL. One cycle of recurrent restricted phenotypic selection was utilized to improve the population. AU Merit is made up of about 300 plants that were selected on the basis of biomass yield, uniform maturity, and plant morphology. Additional traits considered during the selection process were earliness, vigor, and pest resistance.

AU Merit performs well in each of the main regions of the state of Alabama, thus has a wider area of adaptation than the common type and AU EarlyCover (Mosjidis et al., 1995) which performs well in northern and southern areas. When AU Merit is harvested or incorporated in the soil as a green manure about 1 April [time when many farmers get ready to plant corn (Zea mays L.), it has a dry matter yield superior to common hairy vetch in southern Alabama, and about the same in central and northern Alabama. Compared with AU EarlyCover, AU Merit’s yield is superior in the North and similar in the central and southern part of the state. On average, the forage yield of AU Merit was 12 and 4% higher than common hairy vetch in 1997 and 1998, respectively.

AU Merit flowers earlier than common hairy vetch. In 1997, it flowered five to 24 d earlier than common hairy vetch with an average of 13 d, and in 1998, 0 to 19 d earlier with an average of 7 d. Seed of AU Merit have mostly a dull seed coat but about 5% have a shiny seed coat. Its seedlings have most commonly reddish epicotyls with about 4% green, whereas about 18% of common hairy vetch seedlings have green epicotyls.

Foundation and Certified seed classes will be recognized. Breeder seed of AU Merit will be produced and maintained by Auburn University, Alabama Agricultural Experiment Station. U.S. Plant Variety Protection will not be applied for.

J.A. Mosjidis*

References


Dep. of Agronomy and Soils and Alabama Agric. Exp. Stn., Auburn Univ., Auburn, AL 36849-5412. Registration by CSSA. Accepted 31 Mar. 2002. *Corresponding author (mosjija@auburn.edu).

Published in Crop Sci. 42:1751 (2002).

Registration of ‘Shiny Crow’ Black Bean

‘Shiny Crow’ black bean (Phaseolus vulgaris L.) (Reg. no. CV-198, PI 617060) was developed by the Colorado Agricultural Experiment Station and released 15 Apr. 2000. Shiny Crow, tested as CO 96902, has a shiny black seed coat luster which is unique from traditional black bean cultivars grown in the USA that have an opaque seed coat luster. Black beans with shiny seed coat luster are more appealing in some commercial markets. Currently, black bean processors polish opaque black beans to produce a shiny seed coat luster for those markets. Shiny Crow will provide a black bean cultivar for U.S. processors that desire shiny seed coat luster without the need to polish them.

Shiny Crow is a semiwini (CIAT Type III), disease resistant, black bean cultivar with excellent canning quality. Shiny Crow was derived from a single plant selection made in 1988 from