REGISTRATIONS OF CULTIVARS

Registration of ‘Ali Dayi’ Lentil

‘Ali Dayi’ lentil (Lens culinaris Medik.) (Reg. no. CV-13, PI 631395) was developed at the International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria, and released by the Central Research Institute for Field Crops (CRIFC), Ankara, Turkey, in 2001. Ali Dayi, a high-yielding red cotyledon lentil cultivar with lodging resistance, is recommended for spring cultivation in central Anatolia in Turkey.

Ali Dayi, ICARDA accession number ILL 5722, was developed from a cross of ILL 883 by ILL 470. The female parent, ILL 883, is a landrace from Iran, and ILL 470 is a landrace of Syria. The segregating populations were advanced through the bulk method, and single-plant selection was practiced in the F2. The F2:F3 and F2:F5 progenies were evaluated at ICARDA in nonreplicated nurseries. The line was evaluated in replicated preliminary and advanced yield trials in the F4:F7 and F4:F8, respectively. Because of its excellent yield performance and other agronomic attributes, it was entered into the international testing program with the pedigree number FLIP 85-51 L, and accessed by Genetic Resources Unit of ICARDA as ILL 5722.

The Food Legume Improvement Program of CRIFC, Ankara, Turkey, received ILL 5722 through the Legume International Nursery Network in 1993 in the small-seeded lentil nursery category. It was identified as one of the promising lines for spring planting at Haymana, the main CRIFC research site. Subsequently, the line was evaluated in preliminary and large-plot yield trials at the same location. Because of its higher yield performance, lodging resistance, and desirable seed characteristics, it was selected for multilocation yield evaluations.

From 1997–1998 to 1999–2000, ILL 5722 was evaluated at Haymana, Konya, Yozgot, and Karaman research sites in central Anatolia. On average, seed yield of ILL 5722 was 1490 kg ha⁻¹ compared to 1277 kg ha⁻¹ for the best check, Emre 20, an increase of 17%. Low yields occurred in 1998–1999 because of severe drought. Significantly higher yields were recorded in all the trials, except 1997–1998 at Haymana and in 1998–1999 at Konya and Yozgot.

ILL 5722 attains a height of 30 cm, with first pod height at about 12 cm from the ground level, and exhibits an erect growth habit with at least three upright primary branches. The compound leaves have light pubescence, medium sized leaflets, and a well-developed tendril. Tendrils intermingle with each other and keep the canopy in an upright position and suitable for mechanical harvest. It flowers after 59 d; its flowers are white. ILL 5722 reaches physiological maturity after 89 d with no pod shedding even at complete maturity. Seeds have a brown testa without any pattern and weigh 4.7 g/100 seed. Cotyledons are bright red. Protein concentration in ILL 5722 attains a height of 30 cm, with first pod height at about 12 cm from the ground level, and exhibits an erect growth habit with at least three upright primary branches. The compound leaves have light pubescence, medium sized leaflets, and a well-developed tendril. Tendrils intermingle with each other and keep the canopy in an upright position and suitable for mechanical harvest. It flowers after 59 d; its flowers are white. ILL 5722 reaches physiological maturity after 89 d with no pod shedding even at complete maturity. Seeds have a brown testa without any pattern and weigh 4.7 g/100 seed. Cotyledons are bright red. Protein concentration in ILL 5722.

ILL 5722 is resistant to Android black root rot (Bayaa et al., 1986). ILL 5883 is resistant to vascular wilt due to Fusarium oxysporum f. sp. lentis (Vasudeva & Srinivasan) Gordon.}

Registration of ‘Idlib-2’ Lentil

‘Idlib-2’ lentil (Lens culinaris Medik.) (Reg. no. 631396) was developed at the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, and released in 2000 by the Directorate of Research and Scientific Research, Ministry of Agriculture and Agrarian Reform for commercial cultivation in Syria. It is a red cotyledon lentil cultivar with lodging resistance and tolerance to vascular wilt.

Idlib-2 was developed through single-plant selection from a Jordanian landrace, 74TA14. It was introduced in 1977 and is designated as ILL 16. Considerable variability was observed among plants, and a single-plant (81S 15) was made at ICARDA in 1981. After nonreplicated preliminary screening nursery and preliminary and advanced yield trials between 1997–1998 and 1998–1999, it was entered into the international testing program as one of the promising lines in the small-seeded lentil nursery. The line was entered into the Lentil Germplasm Catalog as accession ILL 5883.

The Syrian national program identified ILL 5883 as the highest-yielding line from the Lentil International Nursery (small-seeded lentil nursery) supplied by ICARDA. It was tested in six contrasting sites in Syria from 1986–1987 to 1988–1989. On average, ILL 5883 gave 1625 kg ha⁻¹ seed yield compared to 1232 kg ha⁻¹ for the local check, Hurani, representing an increase of 26.3%.

The line was evaluated under on-farm trials from 1997–1998 to 1999–2000 at 14 sites across the lentil-growing areas. Averaged over 154 on-farm trials, ILL 5883 produced seed yield of 1365 kg ha⁻¹, compared to 1232 kg ha⁻¹ for the local check, Hurani. Lentil straw is an important animal feed in Syria because of the high cost of manual labor. Local lentil cultivars are susceptible to lodging and not suitable for mechanical harvesting. It forms its lowest pod at about 12 cm from the ground level, which reduces harvest losses. Plants form their lowest pods at about 12 cm from the ground level, which reduces harvest losses.

Vascular wilt is a devastating disease of lentil in many countries. Yield losses up to 72% have been reported (Bayaa et al., 1986). ILL 5883 is resistant to vascular wilt due to Fusarium oxysporum f. sp. lentis (Vasudeva & Srinivasan) Gordon. It is also resistant to bacterial green spot (Pseudomonas syringae) and bacterial leaf blight (Erskine, 1990) and in wilt-sick fields at Tel Hadya, Syria, it showed resistance.

Published in Crop Sci. 43:728 (2003).