REGISTRATIONS OF CULTIVARS

Registration of ‘NemaTAM’ Peanut

‘NemaTAM’ (Reg. no. CV-74, PI 631175) is a runner market-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) cultivar with a high level of resistance to root-knot nematode [Meloidogyne arenaria (Neal) Chitwood and M. javanica (Treub) Chitwood]. The new cultivar was tested as TP301-1-8 and was released by the Texas Agricultural Experiment Station in January 2002.

NemaTAM was derived from an introgression pathway (Simpson, 1991) utilizing Florunner (Norden et al., 1969) as the recurrent parent in a backcross program and the initial cross made with a complex interspecific hybrid (2n = 4x = 40) formed by first crossing A. cardenasi Krapov. and W.C. Gregory × A. diogoi Hoehne, then crossing a 50% pollen stainable hybrid with A. batizocoi Krapov. and W.C. Gregory. The resulting trispecies hybrid (2n = 20) had <1% stainable pollen but productive and no fruit. The chromosome number was doubled with colchicine to form TxAAG-6 (Simpson et al., 1993). TxAAG-6 has about 89% stainable pollen and is highly fertile, both selfed and crossed with A. hypogaea. The fertile amphiploid was crossed with Florunner, and seven backcrosses produced TP301-1-8. In each generation, selection was made for agronomic characters matching those of Florunner, the recurrent parent, and for resistance to root-knot nematodes (Nelson et al., 1990; Starr et al., 1990, 1995). ‘COAN’ was earlier released from the BC3 in 1999 (Simpson and Starr, 2001).

Resistance to the nematode species was confirmed in the third self pollinated generation of NemaTAM by means of molecular markers associated with the resistance (Burow et al., 1996; Church et al., 2000). From the BC-F23, 40 of 300 individual plants were selected by molecular markers and for uniform phenotype. These progeny rows were grown in Puerto Rico for winter increase during 1999-2000. The increase resulted in 250 kg of Breeder seed from 21 of the 40 progeny rows, which were planted in Texas for summer increase as foundation seed during 2000.

NemaTAM has plant size similar to Florunner, significantly larger than COAN. The main stem is semiapparent at most locations and seeding rates. The lateral branching is profuse, like Florunner, and the branching pattern is alternate, but not uniformly 2 by 2. Leaf color is moderate green, like Florunner. Pods of NemaTAM are similar in size and shape to Florunner, mostly two seeded (up to 1% three seeded pods). The constriction between the seeds is equal to Florunner. Seed are pink ville, TX 76401; J.L. Starr, Dep. Plant Path. and Micro., Texas A&M College Sta. TX 77834; M.D. Burow, Texas Agr. Exp. Stn., Texas A&M Univ., Stephenville, TX 76401; J.L. Starr, Dep. Plant Path. and Micro., Texas A&M Univ. College Sta. TX 77834; G.T. Church, Dep. Plant Path. and Micro., Texas A&M Univ. College Sta. TX 77834; M.D. Burow, Texas Agr. Exp. Stn., Texas A&M Univ./Texas Tech Univ., Lubbock, TX. 79401; A.H. Paterson, Center for Applied Genetic Tech., Univ. of Georgia, Athens, GA, 30602. Registration by CSSA. Accepted Dec. 2002. *Corresponding author (c-simpson@tamu.edu).

Average yield of NemaTAM was not statistically different (P > 0.05) from Florunner and Tamrun 96 in 11 tests without nematode pressure, 1998 to 2000. In 10 tests with damaging levels of root-knot nematode present, NemaTAM averaged 15% higher yield and produced 129% higher in value per hectare than Florunner, with no chemical application for nematode control.

In shelling tests, NemaTAM was found to not be different (P > 0.05) from Florunner in jumbo, medium, or number 1 seed size distribution. Splits, other kernels, damage kernels, and oil stocks were equal to Florunner.

Quality analyses indicated no significant difference between NemaTAM and Florunner except in oleic/linoleic fatty acid ratio (NemaTAM = 1.3 vs. 1.6 for Florunner). In other traits, the two cultivars were similar in 446.7 g kg⁻¹ oil content, 284.4 g kg⁻¹ protein content, flavor and blandishability.

Foundation seed of NemaTAM will be maintained by Foundation Seed Services, Texas Agric. Exp. Stn., Texas A&M Univ. Agric. Res. and Ext. Ctr., Vernon, TX. 76384. Application (PVP no. 200200148) has been made for U.S. Plant Variety Protection. The cultivar must be sold as a class of Certified Seed, by variety name only. Small samples of seed for research purposes may be obtained from the corresponding author for a period of 5 years.

C.E. SIMPSON,* J.L. STARR, G.T. CHURCH, M.D. BUROW, and A.H. PATERSON

Acknowledgments

Appreciation is expressed to the Texas Peanut Producers Board for their generous support of this research from 1988 to the present time.

References


Published in Crop Sci. 43:1561 (2003).

Registration of ‘Macon’ Wheat

‘Macon’ hard white spring wheat (Triticum aestivum L.) (Reg. no. CV-928, PI 617072) was developed by the Agricultural Research Center of Washington State University (WSU) in cooperation with the University of Idaho, Oregon State University, and the United States Department of Agriculture.