REGISTRATIONS OF CULTIVARS

Registration of ‘Ross’ Meadowfoam

The meadowfoam (Limnanthes alba ssp. alba Benth.) cultivar Ross (Reg. no. CV-13, PI 634713) was developed and released in 2003 by the Oregon Agricultural Experiment Station. Ross was developed by three cycles of recurrent half-sib family selection for increased seed yield and lodging resistance from OMF58, a heterogenous, open-pollinated population. The first and second cycles of selection were performed between 1990 and 1997 (Crane and Knapp, 2000; 2002). Seed increases and field tests of Ross were performed at Corvallis, OR, between 1997 and 2003. Half-sib family seed for cycle three (C3) was produced from open-pollinated plants in an isolated field in 1997–1998. Ross was developed by field testing 114 C3 half-sib families in 1998–1999, selecting 10 families for seed yield, bulking nearly equal quantities of remnant seed of the selected families, and growing and intermating the selected families in an isolated field in 1999–2000. Breeder seed of Ross was produced in an isolated field in 2000–2001 from OMF58 C4 seed produced by intermating selected C3 families. Breeder seed was further increased in an isolated field in 2001–2002.

Ross was tested as OMF164 in replicated yield trials at Corvallis, OR, from 2000 to 2003, where single prophylactic sprays of the insecticide Capture (bifenthrin) were applied in January or February of each year to control meadowfoam fly (Scaptomyza apicalis Hardy) (Fisher et al., 2000). Ross was tested in unsprayed replicated yield trials at Corvallis from 2001 to 2003. Three check cultivars, Wheeler, Knowles, and Floral (Jolliff, 1994; Crane and Knapp, 2000, 2002) were grown in both sprayed and unsprayed yield trials. Seed yields were significantly greater for Ross than check cultivars in individual trials and across trials. The cultivar–trial interaction was non-significant and cultivar rankings for seed yield were identical in every trial. The seed yield for Ross across trials was 1681 kg ha⁻¹, compared with 1529 kg ha⁻¹ for Wheeler, 1307 kg ha⁻¹ for Knowles, and 1084 kg ha⁻¹ for Floral (LSD 0.05 = 127 kg ha⁻¹). The last two cycles of selection in OMF58 increased seed yield by 374 kg ha⁻¹, and three cycles of selection in OMF58 produced a cultivar outyielding Floral by 597 kg ha⁻¹.

The seed oil concentration of Ross (292 g kg⁻¹) was significantly greater than Floral (277 g kg⁻¹) (LSD0.05 = 10 kg ha⁻¹), whereas the seed oil concentrations of Ross, Wheeler (293 g kg⁻¹), and Knowles (290 g kg⁻¹) were not significantly different. Ross produced significantly more seed oil per hectare than the other cultivars tested. The mean seed oil yield for Ross across trials was 490 kg ha⁻¹, compared with 448 kg ha⁻¹ for Wheeler, 378 kg ha⁻¹ for Knowles, and 301 kg ha⁻¹ for Floral (LSD0.05 = 42 kg ha⁻¹). The 100-seed weights for Ross were 10 kg ha⁻¹, compared with 46 kg ha⁻¹ for Wheeler, 378 kg ha⁻¹ for Knowles, and 301 kg ha⁻¹ for Floral (LSD0.05 = 42 kg ha⁻¹).

Acknowledgments

The development of Ross was funded by the United States Department of Agriculture (USDA), State Research Education and Extension Service Special Grants Program (#99-34407-7509, #2002-06119, and #2003-06105). The development of Ross was funded by grants from the United States Department of Agriculture (USDA), Cooperative State Research Education and Extension Service Special Grants Program (#99-34407-7509, #2002-06119, and #2003-06105). The first author is grateful to Sheryl Alonge, Agricultural Research Service, USDA, Washington, DC, for help with field testing and for seed isolates. The second author thanks R. Brunick, Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, for help with field testing. The last two cycles of selection in OMF58 significantly increased seed yield by 374 kg ha⁻¹. The last two cycles of selection in OMF58 increased seed yield by 374 kg ha⁻¹. The last two cycles of selection in OMF58 produced a cultivar outyielding Floral by 597 kg ha⁻¹.

References


S.J. Knapp, Center for Applied Genetic Technologies, 111 Riverbend Road, The University of Georgia, Athens, GA 30602; J.M. Crane, Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR 97331. Registration by CSSA. Accepted 31 July 2004.

S.J. Knapp, Center for Applied Genetic Technologies, 111 Riverbend Road, The University of Georgia, Athens, GA 30602; J.M. Crane, Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR 97331. Registration by CSSA. Accepted 31 July 2004.

Published in Crop Sci. 45:407 (2005).

Registration of ‘S99-3181’ Soybean

‘S99-3181’ soybean (Glycine max (L.) Merr. Reg. no. CV-13, PI 635039) was developed by the Missouri Agricultural Experiment Station at the University of Missouri–Delta Research and Extension Center, Portageville, MO, and released 6 June 2003 because of its potential use in the natto market. It has shatter resistance, good pod fill, and compact growth habit.

The last two cycles of selection in OMF58 significantly increased seed yield by 374 kg ha⁻¹, and three cycles of selection in OMF58 produced a cultivar outyielding Floral by 597 kg ha⁻¹.

Acknowledgments

The development of Ross was funded by grants from the United States Department of Agriculture (USDA), Cooperative State Research Education and Extension Service Special Grants Program (#99-34407-7509, #2002-06119, and #2003-06105). The development of Ross was funded by grants from the United States Department of Agriculture (USDA), Cooperative State Research Education and Extension Service Special Grants Program (#99-34407-7509, #2002-06119, and #2003-06105).

Published in Crop Sci. 45:407 (2005).