About Us | Help Videos | Contact Us | Subscriptions

Members of ASA, CSSA, and SSSA: Due to system upgrades, your subscriptions in the digital library will be unavailable from May 15th to May 22nd. We apologize for any inconvenience this may cause, and thank you for your patience. If you have any questions, please call our membership department at 608-273-8080.


Institutional Subscribers: Institutional subscription access will not be interrupted for existing subscribers who have access via IP authentication, though new subscriptions or changes will not be available during the upgrade period. For questions, please email us at: queries@dl.sciencesocieties.org or call Danielle Lynch: 608-268-4976.



This article in CS

  1. Vol. 51 No. 2, p. 542-552
    Received: June 11, 2010

    * Corresponding author(s): Jode.Edwards@ARS.USDA.GOV
Request Permissions


Predictive Ability Assessment of Linear Mixed Models in Multienvironment Trials in Corn

  1. Yoon-Sup Soa and
  2. Jode Edwards *b
  1. a Yoon-Sup So, Dep. of Crop Science, 2122 Williams Hall, North Carolina State Univ., Raleigh, NC 27695
    b USDA-ARS, Corn Insects and Crop Genetics Research Unit (USDA ARS CICGRU), mailing address: Dep. of Agronomy, Iowa State Univ., Ames, IA 50011


Prediction of future performance of cultivars is an important objective of multienvironment trials (MET). A series of linear mixed models with varying degrees of heterogeneous genotypic variance, correlation, and error variance structure were compared for their ability to predict performance in an untested environment in 51 data sets from the Iowa Crop Performance Test for corn (Zea mays L.). In most cases there was no substantial improvement in predictions among models that included heterogeneity of genotypic variance–covariance components, but the best prediction model included heterogeneous environment-specific error variances in 63% of data sets analyzed. The largest differences in predictive ability among models appeared to be due to poor estimation of genotypic covariance components in data sets with few common hybrids across 2 yr in a data set. Simulation confirmed the observation from cross validation. Our results suggested that predictions were not improved by modeling heterogeneous genotypic covariance components because of the small number of common hybrids across years. Inclusion of heterogeneous error variances did lead to slight improvements in predictions.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2011. Crop Science Society of AmericaCrop Science Society of America