REGISTRATION OF CROP VARIETIES

REGISTRATION OF DISOY SOYBEANS¹
(Reg. No. 65)
C. R. Weber²

'Disoy' soybeans (Glycine max (L.) Merr.) originated as an F3 plant selection from the cross 'Mandarin' (Ottawa) × 'Kanro' × ['Richland' × 'Jogun']. Hybridization, selection, and development leading to this large-seeded variety were done at the Iowa Agricultural and Home Economics Experiment Station in cooperation with the U. S. Regional Soybean Laboratory, U. S. Department of Agriculture. Before release Disoy was designated AX4-21. Disoy is of group II maturity and is best adapted to approximately 43° to 45° latitude.

Disoy was evaluated in regional uniform tests beginning in 1965 by the Crops Research Division and cooperating agricultural experiment stations in Illinois, Iowa, Michigan, Minnesota, Nebraska, Ohio, South Dakota, Wisconsin, U. S.A., and Ontario, Canada. Disoy was increased and released in the spring of 1967 in Illinois, Iowa, Minnesota, and Ohio.

Disoy was developed because other early large-seeded soybean varieties were poor agronomically. Large-seeded varieties are used in foreign export, in home gardens, and by canners and frozen food processors. The increased interest in the production of large-seeded soybeans prompted Disoy's release. Presently, 'Kanrich' is the only agronomically acceptable, completely yellow, large-seeded soybean variety available.

In its area of best adaptation, Disoy yields 7% more than Kanrich and is 17 days earlier in maturity. Disoy yields equal to or above Chippewa 64, is more winterhardy than most introductions ⁴, on a 'cut' basis, Eski sainfoin has been higher yielding than other sainfoin introductions and alfalfa on both irrigated and dryland.

Eski is increased on a limited generation basis with four classes of seed: breeder, foundation, registered, and certified. Seed fields must produce a given class of seed for no more than 5 years. Fields planted with certified seed are not eligible for certification. The Montana Agricultural Experiment Station will maintain breeder and foundation seed.


REGISTRATION OF HARK SOYBEANS¹
(Reg. No. 64)
C. R. Weber²

'Hark' soybeans (Glycine max (L.) Merr.) originated as an F3 plant selection from the cross 'Hawkeye' × 'Harosoy'. Hybridization, selection, and development of Hark were done at the Iowa Agricultural and Home Economics Experiment Station in cooperation with the U. S. Regional Soybean Laboratory, U. S. Department of Agriculture. Before release, Hark was designated A61-540. Selection A58-1334 was the progenitor of Hark.

Hark was evaluated in regional uniform tests beginning in 1961 by the Crops Research Division and cooperating agricultural experiment stations in Illinois, Iowa, Indiana, Michigan, Minnesota, Nebraska, Ohio, South Dakota, Wisconsin, U. S.A. and Ontario, Canada. Hark was increased and released in the summer of 1966 in Illinois, Iowa, Minnesota, Michigan, and South Dakota.

Hark is of group I maturity and is best adapted to approximately 42° to 44° N latitude. In regional tests, Hark yields higher in the western part of the soybean belt than in the eastern part. In Iowa, Hark yields over 11% more than varieties of similar maturity. It is similar in maturity to A-100 and 'Blackhawk' but is 5 days later than 'Chippewa 64' and 5 days earlier than 'Amsoy'. Hark lodges less is, slightly taller, has a higher protein content, and has about the same oil content as varieties that it likely will replace. Although Hark is susceptible to phytophthora root rot, it is considered a replacement for varieties of similar maturity where this disease is not a problem.

Plant and seed appearance of Hark are a combination of its parents. Hark has purple flowers, gray pubescence, tan pods at maturity, yellow seeds with yellow hilum and dull luster, weighing approximately 27 grams per 100. Its growth habit is upright and rather broad.

The Iowa Agricultural Experiment Station will maintain breeder seed.

Other information on Disoy has been published in the Iowa Farm Science 21(12):3-5, 1967, and in the Soybean Digest 27:8, 1967.

¹ Registered by the Crop Science Society of America. Published with the approval of the Iowa Agricultural and Home Economics Experiment Station, Ames, as Journal Paper No. J-5615, Project No. 1179 and as No. 480 of the U. S. Regional Soybean Laboratory, Urbana, III. Received May 5, 1967.
² Director of Research, Peterson Seed Company, Waterloo, Iowa, and Savage, Minn. (formerly Research Agronomist, Crops Research Division, ARS, USDA, and Professor of Agronomy, Iowa State University, Ames).

REGISTRATION OF MAGNA SOYBEANS¹
(Reg. No. 66)
C. R. Weber²

'Magna' soybeans (Glycine max (L.) Merr.) originated as an F3 plant selection from the cross 'Mandarin' (Ottawa) × 'Jogun'. Hybridization, selection, and development leading to this large-seeded variety were done at the Iowa Agricultural and Home Economics Experiment Station in cooperation with the U. S. Regional Soybean Laboratory, U. S. Department of Agriculture. Before release, Magna was designated AX4-90. Magna is of group II maturity and is best adapted to approximately 42° to 45° N latitude.

Magna was evaluated in regional uniform tests beginning in 1965 by the Crops Research Division and cooperating agricultural experiment stations in Illinois, Indiana, Iowa, Michigan, Minnesota, Nebraska, Ohio, South Dakota, Wisconsin, U.S.A., and Ontario, Canada. Magna was increased and released in the spring of 1967 in Illinois, Iowa, Minnesota, and Ohio.

Magna was developed because other early large-seeded soybean varieties were poor agronomically. Large-seeded varieties are used in foreign export, in home gardens, and by canners and frozen food processors. The increased interest in the production of large-seeded soybeans prompted Magna's release. Presently, 'Kanrich' is the only agronomically acceptable, completely yellow, large-seeded soybean variety available.

In its area of best adaptation, Magna yields 7% more than Kanrich and is 17 days earlier in maturity. Magna yields equal to or above Chippewa 64, is more winterhardy than most introductions ⁴, on a 'cut' basis, Eski sainfoin has been higher yielding than other sainfoin introductions and alfalfa on both irrigated and dryland.

Eski is increased on a limited generation basis with four classes of seed: breeder, foundation, registered, and certified. Seed fields must produce a given class of seed for no more than 5 years. Fields planted with certified seed are not eligible for certification. The Montana Agricultural Experiment Station will maintain breeder and foundation seed.