best in a cool, moist, marine-type climate or during the cool, moist seasons of spring and fall. Rather poor summer performance can be expected on warmer sites or in regions having hot summers.

Manhattan is one of the better ryegrasses with respect to winter hardiness and snow mold resistance, but is inferior to Kentucky bluegrass and red fescue in this regard. An improved bluegrass should normally be mixed with Manhattan to improve summer and winter performance, especially in areas having a continental climate. Manhattan is easy to establish and will grow on a wide range of soil types, including many of the sandy coastal plain soils where Kentucky bluegrass is not well adapted. The cultivar is useful in the appropriate overseeding or renovation of turf areas devastated by disease, insects, summer injury or wear. Manhattan generally is easier to mow than common perennial ryegrass but can be difficult at times. Frequent cutting with a sharp mower is advisable for maintaining top quality. None of the parental clones of Manhattan carry the factor for fluorescent seedlings.

Seed propagation is limited to two generations of increase from breeder seed—one each of foundation and certified. Breeder seed, maintained by the New Jersey Agricultural Experiment Station, is a composite of seed from the 16 clones.

REGISTRATION OF C.P. 52-48 SUGARCANE¹
(Reg. No. 5)
Kelly C. Freeman²

‘C.P. 52-48’ (Saccharum sp.) was selected and propagated as a single clone from progeny of the cross ‘C.P. 36-105’ × ‘C.P. 38-34’. The cross was made at the U.S. Sugarcane Field Station, Canal Point, Fla. C.P. 52-48 was developed for sirup production through cooperative research of the U.S. Department of Agriculture and the Cairo Cane Growers’ League at Cairo, Ga.

The long leaves of C.P. 52-48 tend to droop, giving early shading of the row, which helps in the control of weeds. Stalks of C.P. 52-48 are pale green with a grayish to pinkish wax covering. The stalks are stiff, upright, and resistant to lodging. C.P. 52-48 is more cold tolerant, germinates earlier in the spring and develops a satisfactory stand 2 to 3 weeks earlier than C.P. 29-115.

C.P. 52-48 is superior to C.P. 29-116 in yield of sirup per acre in plant cane, first-year stubble, and second-year stubble crops. The quality of sirup of the two varieties is equal.

Mosaic has not been observed in C.P. 52-48 in Georgia. Banked seedcane of C.P. 52-48 was observed to have less damage from red rot than banked seedcane of C.P. 29-116.

Seedcane was made available for distribution to sirup producers through Foundation Seeds, Inc., 307 Hope Smith Annex, Athens, Georgia.


REGISTRATION OF SC 66 TOBACCO¹
(Reg. No. 38)


‘SC 66’ flue-cured tobacco (Nicotiana tabacum L.) was selected from a series of crosses with cultivars ‘Coker 139’, ‘Hicks Broadleaf’, ‘NC 95’, and ‘Bel 450’. Bel 450 is a breeding line developed from a cross between alloploid N. sylvestris Speg and N. tabacum ‘Li 3000’ × ‘Nil’. The cultivar is known that attacks flue-cured tobacco in the southeastern United States. This new cultivar was developed over a period of 10 years and was in the eighth selfed generation from the last cross at the time of its release. The cultivar was released jointly in 1967 by the South Carolina Agricultural Experiment Station and the Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture.

SC 66 is moderately resistant to black shank and bacterial wilt, and highly resistant to fusarium wilt and the common species of root-knot nematode (Melocongoncinsuida Kofoid and White) but is inferior to ‘Hicks Broadleaf’. The leaf shape of SC 66 resembles that of ‘Hicks Broadleaf’. The plant is about 7.5 cm taller, has approximately 2 more leaves per plant, and flowers about 10 days later than ‘Hicks Broadleaf’. The curing and handling qualities of the new cultivar are satisfactory.

The new cultivar was tested for 2 years in regional tests in five states throughout the flue-cured tobacco growing areas. In comparison with the standard checks NC 95 and Hicks Broadleaf, the yield and value per hectare were considerably better than Hicks and equivalent to NC 95. It also compared favorably with the check cultivars for chemical and physical characteristics. SC 66 has the necessary characteristics to produce the high quality, flue-cured tobacco that all production areas are seeking.

Banked seed of SC 66 is available to certified seed producers for increasing. Foundation seed will be maintained and distributed by the South Carolina Agricultural Experiment Station, Clemson, South Carolina, 29632.


REGISTRATION OF KY 14 TOBACCO¹
(Reg. No. 39)

C. C. Litton, G. B. Collins, and P. D. Legge²

‘KY 14’ is a burley tobacco (Nicotiana tabacum L.) cultivar with resistance to wildfire, tobacco mosaic, black root rot, and fusarium wilt. KY 14 was developed and evaluated as experimental 51. The first cross in the development of KY 14 was ‘Warner’ × ‘Burley 21’. Burley 21 was the source of resistance to wildfire and tobacco mosaic. Resistance to both diseases is inherited as an independent single dominant factor and the resistance to wildfire and tobacco mosaic in Burley 21 was obtained from N. longiflora Cav. and N. glutinosa L., respectively. Subsequent development included crosses to two experimental lines (Experimental 1 and Experimental 4), ‘Ky 16’, and Burley 21. Experimental 1 and Experimental 4 were high-yielding lines resistant to black root rot and fusarium wilt. A Tobacco Introduction (TIT-87) was the original source of black root-rot resistance, and fusarium wilt resistance was derived from the flue-cured cultivar ‘McCuller 27’. The cultivar was released jointly in 1968 by the Kentucky Agricultural Ex-

¹ Registered by the Crop Science Society of America. Cooperative investigations at Lexington, Ky., the Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture; the Department of Agronomy, University of Kentucky, Lexington, Kentucky, and the Department of Agronomy, South Carolina Agricultural Experiment Station. The investigation reported in this paper 69-11-29 is in connection with a project of the Kentucky Agricultural Experiment Station and is published with approval of the Director. Received June 25, 1969.
