Introductory Comments for the Forage Symposium

Dwight S. Fisher*

D.S. Fisher, J.P.C.S. Natural Resource Conservation Center, 1420 Experiment Station Road, Watkinsville, GA 30677. Received 5 Jan. 2011. *Corresponding author (dwight.fisher@ars.usda.gov).

First of all I would like to extend special thanks to Dr. Glenn Aiken for his efforts in organizing the symposium and encouraging these submissions. These papers are the product of a symposium at the 2009 annual meetings of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. I also thank the authors for their efforts to make substantive contributions to the literature with these manuscripts and promote the science of forage evaluation and grazing systems.

In 1959, an Intersociety Forage Evaluation Symposium was held by the American Society of Agronomy in association with the American Dairy Science Association, the American Society of Animal Production, and the American Range Management Society. At the time, Sell et al. (1959) pointed out that, “It would appear from the papers in general that, so far, no one criteria can adequately denote forage value. One of a limited number of factors can perhaps be used safely in evaluating a forage under limited conditions for a specific purpose and with a particular class of livestock, but for general use in forage evaluation it appears desirable to include as many factors affecting the final outcome as possible.” The current symposium makes it clear that over the last 50 years we have made considerable progress in both methodology as well as in understanding the interactions of the relevant factors affecting animal performance in various animal species and classes.

In this symposium, Dr. Burns (p. 390–402, this issue) outlined the history of forage analysis and provided valuable information on how methodology has improved over the years. He also provided insight on the assay of interacting aspects of nutritive value. The analysis of nutritive value continues to challenge us as we attempt to extrapolate to forage quality and animal performance. Drs. Sollenberger and Vansant (p. 420–432, this issue) outlined the relevant literature for progress on understanding the interrelationships among forage nutritive value, quantity, and individual animal performance. Understanding the constraints for Dr. Evers (p. 403–409, this issue) gives a valuable overview of the available legumes and their unique role in forage systems. His work provides a basis for viable recommendations as future costs of nitrogen fertilizer fluctuate and the need for high quality forages to maximize production in select animal classes become keys of profitable systems. Drs. Phillips, Horn, and Cole (p. 410–419, this issue) provide an excellent assessment of why we have the current configuration of the beef industry and also provide an analysis of the likely impact of future production and transportation costs on local and grass-fed beef.

In the last 50 years we have clearly reviewed the “many factors affecting the final outcome” in feeding ruminant livestock. As these researchers have outlined, we have made progress on defining nutritive value, forage quality, and predicting animal performance in complex production systems. The many interactions present in forage systems will continue to provide challenges for future researchers. However, the progress of the basic science during this time has provided the background for the development of robust forage production systems that can be adapted to a changing environmental and economic milieu.

References