Supplemental File 1

Case study 1: The linear mixed model used for analysis of entries across locations, seasons and years:

\[
Y_{ijklm} = M + g_i + l_j + (gl)_{ij} + y_l + (gy)_{il} + (gyl)_{ijl} + (gsy)_{ikl} + (gb)_{im} + \varepsilon_{ijklm},
\]

\[Y_{ijklm}\] is the value of an attribute measured from entry \(i\) in replicate \(m\) at location \(j\) in season \(k\) of year \(l\), and \(i=1,...,ng, j=1,...,nl, k=1,...,ns, l=1,...,ny, m=1,...,nb;\) where \(g, l, s, y\) and \(b\) are entries, locations, seasons, years and replicates, respectively; \(M\) is the overall mean; \(g_i\) is the random effect of entry \(i\), \(N(0, \sigma^2_g)\); \(l_j\) is the fixed effect of location \(j\); \(y_l\) is the fixed effect of year \(l\); \(bjklm\) is the random effect of replicate \(m\) within location \(j\), within season \(k\), within year \(l\), \(N(0, \sigma^2_b)\); \((gl)_{ij}\) is the effect of the interaction between entry \(i\) and location \(j\), \(N(0, \sigma^2_{gl})\); \((gs)_{ik}\) is the random effect of the interaction between entry \(i\) and season \(k\), \(N(0, \sigma^2_{gs})\); \((gy)_{il}\) is the random effect of the interaction between entry \(i\) and year \(l\), \(N(0, \sigma^2_{gy})\); \((sy)_{kl}\) is the interaction between the fixed effects season \(k\) and year \(l\), \(N(0, \sigma^2_{sy})\); \((gly)_{ijl}\) is the random effect of the interaction between entry \(i\), location \(j\) and year \(l\), \(N(0, \sigma^2_{gly})\); \((gsy)_{ikl}\) is the random effect of the interaction between entry \(i\), season \(k\) and year \(l\), \(N(0, \sigma^2_{gsy})\); \((gb)_{im}\) is the effect of the interaction between entry \(i\) and replicate \(m\), \(N(0, \sigma^2_{gb})\); \(\varepsilon_{ijklm}\) is the residual effect for entry \(i\) in replicate \(m\) in location \(j\) during year \(l\), \(N(0, \sigma^2_{\varepsilon})\).

Case study 2: The linear mixed model used for analysis of families across seasons and years:

\[
Y_{ijklmn} = M + f_i + y_j + (fy)_{ij} + s_{jk} + (fs)_{ik} + b_{kl} + r_{jklm} + c_{jkln} + \varepsilon_{ijklmn},
\]

\[Y_{ijklmn}\] is the value of an attribute measured from HS family \(i\) in row \(m\) and column \(n\) of replicate \(l\) nested in season \(k\) in year \(j\) and \(i=1,...,nf, j=1,...,ny, k=1,...,ns, l=1,...,nb, m=1,...,nr, n=1,...,nc;\) where \(f, y, s, b, r\) and \(c\) are half sib families, years, seasons, replicates, rows and columns, respectively; \(M\) is the overall mean; \(f_i\) is the random effect of HS family \(i\), \(N(0, \sigma^2_f)\); \(y_j\) is the fixed effect of year \(j\); \((fy)_{ij}\) is the random effect of the interaction between HS family \(i\) and year \(j\), \(N(0, \sigma^2_{fy})\); \(s_{jk}\) is the fixed effect of season \(k\) within year \(j\); \((fs)_{ij}\) is the random effect of the interaction between HS family \(i\) and season \(k\), \(N(0, \sigma^2_{fs})\); \(b_{kl}\) is the random effect of replicate \(l\) within season \(k\) in year \(j\), \(N(0, \sigma^2_b)\); \(r_{jklm}\) is the random effect of row \(m\) within replicate \(l\) within season \(k\) in year \(j\), \(N(0, \sigma^2_r)\); \(c_{jkln}\) is the random effect of column \(n\) within replicate \(l\) within season \(k\) in year \(j\), \(N(0, \sigma^2_c)\); \(\varepsilon_{ijklmn}\) is the residual effect of HS family \(i\) in row \(m\) and column \(n\) of replicate \(l\) during season \(k\) in year \(j\), \(N(0, \sigma^2_{\varepsilon})\).
Case study 3: The completely random linear model used for analysis of families across locations and years:

\[Y_{ijklmn} = M + f_i + y_j + (fy)_{ij} + l_{jk} + (fl)_{ik} + b_{jkl} + r_{jklm} + c_{jkln} + \varepsilon_{ijklmn}, \quad (7) \]

\(Y_{ijklmn} \) is the value of an attribute measured from HS family \(i \) in row \(m \) and column \(n \) of replicate \(l \) nested in location \(k \) in year \(j \) and \(i=1,...,n_f \), \(j=1,...,n_y \), \(k=1,...,n_l \), \(l=1,...,n_b \), \(m=1,...,n_r \), \(n=1,...,n_c \), where \(f, y, l, b, r \) and \(c \) are half sib families, years, locations, replicates, rows and columns, respectively; \(M \) is the overall mean; \(f_i \) is the random effect of HS family \(i \), \(N(0,\sigma^2_f) \); \(y_j \) is the fixed effect of year \(j \), \(N(0,\sigma^2_y) \); \(l_{jk} \) is the fixed effect of location \(k \) within year \(j \), \(N(0,\sigma^2_l) \); \((fy)_{ij} \) is the random effect of the interaction between HS family \(i \) and year \(j \), \((fy)_{ij} \sim N(0,\sigma^2_{fy}) \); \((fl)_{ik} \) is the random effect of the interaction between HS family \(i \) and location \(k \), \((fl)_{ik} \sim N(0,\sigma^2_{fs}) \); \(b_{jkl} \) is the random effect of replicate \(l \) within location \(k \) in year \(j \), \(N(0,\sigma^2_b) \); \(r_{jklm} \) is the random effect of row \(m \) within replicate \(l \) within location \(k \) in year \(j \), \(N(0,\sigma^2_r) \); \(c_{jkln} \) is the random effect of column \(n \) within replicate \(l \) within location \(k \) in year \(j \), \(N(0,\sigma^2_c) \); \(\varepsilon_{ijklmn} \) is the residual effect of HS family \(i \) in row \(m \) and column \(n \) of replicate \(l \) at location \(k \) in year \(j \), \(N(0,\sigma^2_\varepsilon) \).