and around the world. Applications: Review of applications will begin October 15, 2013 and continue until a successful candidate is identified. A background check is required for employment in this position. Candidates must submit a letter of application, including a statement of research goals, teaching philosophy, curriculum vitae and contact information for four references (names, addresses, email addresses, telephone numbers) to: Mitch Tuinstra (c/o Jenny Kelly-Jckelly@purdue.edu), Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, Phone: 765-494-4774. URL: https://ag.purdue.edu/agry/. Purdue University is an Equal Opportunity/Equal Access/Affirmative Action Employer fully committed to achieving a diverse workforce.

Wisconsin—Assistant Professor of Soil Ecology. The Department of Soil Science at the University of Wisconsin-Madison invites applications for a 9-month tenure-track faculty position in soil ecology at the assistant professor level. The position will focus on research and instruction in soil ecology including but not limited to linking below-ground processes to ecosystem functions; the dynamics of nutrient, energy, and mass fluxes in soils; the effects of global change on soil processes; and characterizing and evaluating soil biodiversity. The position carries a 75% research/25% teaching distribution effort. Research responsibilities will include obtaining external funding to maintain a vigorous research program focused on soil ecology. The incumbent will train graduate students, publish in peer-reviewed journals, and is expected to become a leader in soil ecology nationally and internationally. The University of Wisconsin-Madison is a world leader in ecology (ecology.wisc.edu) and genetics research, and collaboration with a talented and diverse group of faculty and staff across campus is expected and encouraged. Teaching responsibilities include the ability to teach up to two courses per year serving both undergraduates and graduate students in the field of soil biology and ecology. Opportunities to provide instruction in team-taught courses related to soil ecology are available. The incumbent will also advise graduate students, provide undergraduates with hands-on research opportunities, give occasional guest lectures, and participate in graduate-level seminars. Innovative teaching approaches are encouraged. Requirements include a PhD in Soil Science, Microbiology or related discipline; a strong foundation and relevant research experience in the principles and concepts of soil ecology and soil microbiology; effective oral and written communications skills; experience in teaching in higher education; ability to work effectively across disciplines and with teams; and the ability to lead and motivate others. Applicants should submit the following materials to Jennifer Etter Goh (jgoh@wisc.edu): (1) a single pdf containing a cover letter, statements of research and teaching interests, and curriculum vitae; (2) contact information (name, address, phone and e-mail address) of three references; and (3) copies of college transcripts. Please direct questions regarding the position to Professor Doug Soldat (djsoldat@wisc.edu). Applications received by November 22, 2013 will be assured full consideration. Review of applications will continue until a suitable candidate is identified. A background check is required for employment in this position. Candidates are encouraged to submit applications before October 15, 2013.

Career Transition continued from page 38

yield by balancing his nutrient use and timing to the physiological high nutrient demand stage without a significant change in the input cost. This is where the knowledge accrued by you during your training is translated into smiles on the farmer’s face.

Reducing the Knowledge Gap

Basic and cutting-edge research is very important for the innovation of new technologies. Probably thousands of outputs of basic research were needed to come up with GIS technology or a GreenSeeker instrument, but these are now used widely in the “on-the-go” platforms for farmers. So it is equally important that the end-users, the farmers, should get the benefit of developed technologies to improving their livelihood. Therefore, researchers need to work in tandem with extension scientists to disseminate the new knowledge or technology to the farmers creates the best case scenario. Unfortunately, it is a fact that the farmers adopt more than 90% of the innovations developed at universities, but there is a huge gap between the demand by the farmers and the technology innovated by the university scientists. There are no extension professionals who can play a key role to provide information to both ends—not only from the farm to land, but also from land to lab. Their feedback will be the starting point of the agricultural researchers. We are optimistic about food security when we see the productivity levels of major crops at university farms; and at the same time, we are concerned about the productivity of crops, which is sometimes half of the well-managed plots at the university farms. So there is a gap between attainable yield and actual yield that can be reduced by the knowledge dissemination by the extension scientists.

Looking Forward...

Recently, we have been focusing on developing a decision support tool to help smallholder cereal farmers in South Asia. We were trying to package almost two decades of basic research on site-specific nutrient management into a simple delivery tool that would help ground-level workers provide sound nutrient recommendations to millions of cereal farmers in South Asia. After the development and large-scale validation, the tool, Nutrient Expert, is now being used by the extension systems in India. We see the smiles on the faces of the stakeholders and large-scale validation, the tool, Nutrient Expert, is now being used by the extension systems in India. We see the smiles on the faces of farmers. So it is equally important that the end-users, i.e. the farmers, play an active role in the innovation of new technologies. Probably hundreds of millions of cereal farmers in South Asia. After the development and large-scale validation, the tool, Nutrient Expert, is now being used by the extension systems in India. We see the smiles on the faces of farmers. So it is equally important that the end-users, i.e. the farmers, play an active role in the innovation of new technologies. Probably hundreds of millions of cereal farmers in South Asia. After the development and large-scale validation, the tool, Nutrient Expert, is now being used by the extension systems in India. We see the smiles on the faces of farmers. So it is equally important that the end-users, i.e. the farmers, play an active role in the innovation of new technologies. Probably thousands of innovations developed at universities, but there is a huge gap between the demand by the farmers and the technology innovated by the university scientists. There are no extension professionals who can play a key role to provide information to both ends—not only from the farm to land, but also from land to lab. Their feedback will be the starting point of the agricultural researchers. We are optimistic about food security when we see the productivity levels of major crops at university farms; and at the same time, we are concerned about the productivity of crops, which is sometimes half of the well-managed plots at the university farms. So there is a gap between attainable yield and actual yield that can be reduced by the knowledge dissemination by the extension scientists.