The January–February 2016 issue of the *Journal of Environmental Quality* (JEQ) includes a special section titled “The Urban Forest and Ecosystem Services.” Guest editor Steven Livesley, University of Melbourne, Richmond, Victoria, Australia, provides some details about the special section below:

CSA News: What prompted you to pull together this special section of papers?

Livesley: In the summer of 2014, I visited Europe to attend two excellent international conferences focused upon the role of trees in urban landscapes: the 16th European Forum for Urban Forestry (Lausanne, Switzerland) and the 1st International Conference on Urban Tree Diversity (Alnarp, Malmo, Sweden). There were many excellent studies that I felt would benefit from exposure to a wider environmental science audience through a consolidated special section. The *Journal of Environmental Quality* provides such an outlet and audience.

CSA News: Urban forestry has been around for decades, so what makes the subject timely and important now?

Livesley: Yes, “urban forestry” as a term has been recognized for several decades now, but urban tree management as a practice, for aesthetic reasons and ecosystem service functions, has been around since settlement in towns and cities began. We have an innate association with trees. Even in the most dense and modern cities, we still strive to grow trees, to maintain a connection with nature as well as gain from shade, biodiversity, and cooling. With the rise of the term urban forestry, there has been a growing rise in the recognition of the many ecosystem service benefits that trees can provide, from particulate air pollution interception, stormwater runoff reduction, and water quality improvement, to cooling through shade and transpiration.

However, the scientific understanding and evidence base through which city managers can justify the expense of urban tree management or even argue for greater urban tree planting has not kept pace. It is vital that the scientific evidence we have as to the magnitude of these benefits, and the understanding of how these ecosystem service benefits operate, be consolidated and made available to help keep the trees in our towns and cities. This evidence base is needed now so that urban forests can be recognized as a central tool in urban climate change adaptation and overall future urban “liveability.” The publication of this special section is also timely as we are about to host the 2nd International Conference on Urban Tree Diversity in Melbourne, Australia.

CSA News: Would you describe briefly what this special collection of papers encompasses?

Livesley: The special section contains urban ecosystem studies from all over the globe: from Japan, Australia, Mexico, North America, Scandinavia, Argentina, and Germany. The focus of these studies falls generally into three categories: An assessment of the impact and role that trees perform in urban landscapes with regards to water, pollution, or heat (cooling).

CSA News: What was the most surprisingly or interesting thing you learned from working on this collection?

Livesley: What was not surprising was the quality of the studies submitted to the special section. What was interesting was how a clear nexus between improved urban forest function and improved urban water management exists, and this was reinforced by many of the studies. This special section provides an evidence base for many

Photo courtesy of Dan Wendt, Public Affairs, MWRD, Chicago, IL.

continued on page 30
ing undergraduate and graduate students and working with government and industry clientele. Candidates are expected to establish an outstanding teaching and grant-supported research program in basic and applied studies on environmental variables affecting crop production and technologies for precision application of inputs, with emphasis on efficient crop water use. Candidates should have an earned Ph.D. in agronomy, agricultural meteorology, plant physiology, or related fields with strong emphasis on crop science in relation to ecophysiological factors driving crop development and resource use such as water. Desirable skills and training include GIS/GPS, remote sensing, environmental instrumentation, irrigation science, and plant growth modeling. Demonstrated strength in scholarly publications consistent with assistant/associate professor rank in environmental crop physiology and precision agriculture is expected. Applicants must have excellent interpersonal, oral, and written communication skills and the ability to effectively communicate and teach in English. Aptitudes for working with industry and government agencies, as well as conducting and publishing high-quality, interdisciplinary scientific research are also expected. Candidates must be authorized for employment in the United States. Please note that all application materials must be submitted on-line through the Texas Tech University application site at http://www.depts.ttu.edu/hr/workattech/ and search for Requisition Number 5418BR. Applicants should submit a CV, teaching evaluations if available, official transcripts, along with statements of research and teaching philosophies. Applicants should supply names and contact information of three (3) individuals who may be contacted for letters of reference. Questions should be addressed to Dr. Chuck West, Search Committee Chair, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409-2122, Phone (806) 834-4160; email: chuck.west@ttu.edu. Review of the application will start immediately and will continue until the position is filled. Earliest expected starting time is January 1st, 2016.

Texas—Assistant/Associate Professor in Plant Breeding (Emphasis on Cotton & Small Grains). The Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas seeks candidates for an assistant/associate professor position in plant breeding with an emphasis on cotton, sorghum, and millet. This will be a 9-month, tenure-track position. Candidates are expected to establish an outstanding teaching and grant-supported research program in basic and applied studies on plant breeding. Willingness to collaborate with other plant breeders, plant geneticists, and genomists dealing with crops and horticultural plants at Texas Tech, Texas A&M AgriLife, and USDA-ARS is necessary. Candidates must have an earned Ph.D. in a field related to plant breeding or plant genetics. Demonstrated ability for interdisciplinary collaboration, publishing high-quality scientific research, and grantsmanship consistent with assistant/associate professor rank are expected. For applicants seeking the assistant professor rank, post-doctoral training and independent research experience is highly desirable, whereas applicants at the associate professor level should have an exceptional record of academic performance and scholarship that would merit an appointment at the higher rank. Excellent interpersonal, oral, and written communication skills are essential. In addition, applications must be able to effectively communicate in English and be authorized for employment in the United States. Please note that all application materials must be submitted on-line through the Texas Tech University application site at http://www.depts.ttu.edu/hr/workattech/ and search for Requisition Number 5773BR. Applicants should submit a CV, official transcripts, along with statements of research. Applicants should supply names and contact information of three (3) individuals who may be contacted for letters of reference. Questions should be addressed to Dr. Eric F. Hequet, Search Committee Chair, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409-2122, Phone (806) 834-0621; email: eric.hequet@ttu.edu. Review of the application will start immediately and will continue until the position is filled. Expected starting date is September 1, 2016.

The Urban Forest and Ecosystem Services continued from page 15

of the benefits that urban trees can provide. But to maintain and increase those benefits in the harsh growth environment of an urban streetscape, we need future research to be a collaboration between water infrastructure engineers, urban catchment hydrologists, urban forest researchers, and urban planners. Whether your city is in a high-rainfall, flood-risk climate, or it’s in a low rainfall, hot and arid landscape, the nexus between the urban forest, green space, and catchment hydrologies requires multidisciplinary research to plan, design, and manage an urban landscape for future challenges.

CSA News: Why did you invite Greg McPherson and Carlo Calfapietra to serve as guest editors on this special section with you?