Balancing Bermudagrass Hay Quality with Phosphorus Removal

Producing bermudagrass hay from fields receiving poultry litter provides both high quality forage for ruminant livestock and a means of removing environmentally sensitive nutrients, especially phosphorus (P). While growers seek a reasonable balance between high forage production and quality by cutting every 28 to 35 days, the impact of harvest management on controlling soil P is not widely known.

In the May–June 2018 issue of *Agronomy Journal*, researchers report on multi-year studies from two locations in east-central Mississippi where three harvest intervals and two stubble heights were evaluated on ‘Tifton 44’ bermudagrass. Each spring, plants were provided 4 ton ac\(^{-1}\) poultry litter supplemented with 60 to 98 lb ac\(^{-1}\) fertilizer N, depending on location.

The team found a commonly used practice, cutting every 35 days at low stubble height, provided a reasonable balance between optimizing forage nutritive value and P removal. The forage cut every 35 days had a comparatively small decrease in crude protein as stubble height decreased from 3.5 to 1.25 inches. Cutting every 49 days at low stubble height maximized P removal at approximately 25 lb ac\(^{-1}\) regardless of location. This knowledge is vital to farm income, which is not driven by manure management, but livestock output.

Convert Soil Tests to Soil Phosphorus Supply

Phosphorus (P) shortage in highly weathered tropical soils is a major constraint for agricultural productivity. Ascertaining accurate information about the continually changing temporal and spatial distribution of P within such soils is a never-ending challenge for farmers to meet each crop’s P nourishment requirement.

For crop growth and maturation, soil P exists in two pools designated as weakly adsorbed P (readily available) and tightly adsorbed P (slowly available), but unfortunately they cannot be directly measured. The historical problem of soil tests made with chemicals to extract P from soil is that they only extracted a portion of the soil P, and furthermore, the percentage from each P pool is unknown and varies with soils.

In the March–April 2018 issue of *Agronomy Journal*, researchers measured the percentages of P pools extracted by two extractants in the laboratory. A weak test (Olsen method) extracted only the weakly adsorbed P, and a strong test (modified Truog method) extracted both P pools. The three extraction percentages of P pools were found to be predictable from soil mineralogical composition.

As long as the three extraction percentages become known, soil tests can be converted into the amount of P in the two pools to quantify soil P supply. Hence, P recommendation can be designed as a universal formula (crop demand minus soil P supply) in order to optimize yields and minimize the impact of agriculture on the environment.

A set of weak and strong soil P tests and the three extraction percentages for the conversion of the two tests to soil P pools.

Regrowth of hybrid bermudagrass after cutting at different heights. Photo courtesy of John Read.