sulfonates, sulfates, phosphates, and silicates,” but there is little or no suggestion of the presence of the four strongest LAS bands, which lie in that region. The 830 and 690 LAS bands lie in the clear and they are obviously not present in any of the 1-day spectra; peaks in their general vicinity do become evident from time to time upon aging the mixtures, but they are never accompanied by the seven others which all together might indicate the presence of LAS.

I might also mention that the three sulfophenylalkanoates with chain lengths of 5, 7, and 11 carbon atoms, synthesized as models of LAS biodegradation intermediates (Swisher et al., 1978), show much the same IR pattern as described above for LAS, with the addition of intense carboxylate absorption around 1400–1600 cm⁻¹ (Eggert').

The spectra presented in the paper thus suggest that the IR spectroscopic analytical method employed was not sensitive enough to detect LAS and/or its biodegradation intermediates at whatever concentrations existed in the mixtures.

LITERATURE CITED


Received November 1980

R. D. SWISHER

Chemical and Environmental Consultant
1894 Charmwood Court
Kirkwood, MO 63122

Infrared Spectral Evidence for Linear Alkylbenzene Sulfonates in Sewage Sludge-Soil Mixtures

Swisher (1981) has questioned part of the interpretation given by Schaumberg et al. (1980) in their study of the infrared spectra of the water-soluble fractions of incubated sewage sludge-soil mixtures. The principal assertion made by Swisher (1981) is that “the IR spectra presented in the paper give no indication of the presence of...