that allow prediction of solute movement and binding in soils. Chapter 5 discusses uptake properties of roots, and is much expanded compared to the chapter included in the 1977 book. It includes new information on molecular and cellular processes. Chapter 6 deals with solute transport near root surfaces.

The latter half of the book is considerably expanded compared with the 1977 edition, with new chapters dealing with chemical and physical modifications of the rhizosphere (Chapter 7), microbial modification of the rhizosphere (Chapter 8), and root system architecture (Chapter 9). I found that these chapters provided well-written summaries of recent research in each of the areas. Chapters 10 and 11 attempt to integrate the information presented in the first nine chapters by providing a synthesis of uptake by single plants (Chapter 10) and by crops/vegetation (Chapter 11). Both chapters provide an excellent review of several models, their assumptions, and their limitations. The authors’ perspectives and discussion on modeling are excellent, and I found these two chapters to be extremely useful.

I am unaware of a more comprehensive discussion of the topic, and I consider this book to be an indispensable addition to the library of anyone involved in rhizosphere research.

CHRISTIAN P. ANDERSEN
Western Ecology Division
National Health and Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
200 SW 35th St.
Corvallis, OR 97333
(andersen.christian@epa.gov)

ERRATA

Greenhouse Gas Emissions during Cattle Feedlot Manure Composting


We have learned of a calculation error during conversion of the N₂O–N to CO₂–C equivalent presented in Table 2 of the above article (page 381). The values in the third column from right should be 14.6 and 25.2, not 34.1 and 58.9. The last column should be 220.7 and 367.7, not 240.2 and 401.4. The calculation error does not change any conclusions from this study.

The correct Table 2 is shown below, and the authors apologize to the readers for any inconvenience this may have caused.

Table 2. Cumulative greenhouse gas (GHG) emissions during feedlot manure composting (May–August 1997).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CO₂–C</th>
<th>CH₄–C</th>
<th>N₂O–N</th>
<th>CO₂–C</th>
<th>CH₄–C</th>
<th>N₂O–N</th>
<th>CO₂–C Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive†</td>
<td>73.8b*</td>
<td>6.3a</td>
<td>0.11b</td>
<td>73.8</td>
<td>132.3</td>
<td>14.6</td>
<td>220.7b</td>
</tr>
<tr>
<td>Active‡</td>
<td>168.0a</td>
<td>8.1a</td>
<td>0.19a</td>
<td>168.0</td>
<td>170.1</td>
<td>25.2</td>
<td>367.7a</td>
</tr>
</tbody>
</table>

* Within columns, means followed by the same letter are not significantly different according to the Tukey test (0.05).
† Initial surface area of 162.1 m² windrow⁻¹ and weight of 9.55 Mg windrow⁻¹ were used in calculation.
‡ Initial surface area of 156.5 m² windrow⁻¹ and weight of 6.67 Mg windrow⁻¹ were used in calculation.
§ Using global warming potential of 1, 21, and 310 for CO₂, CH₄, and N₂O, respectively.
¶ Based on fuel consumption of 0.266 L turn⁻¹ Mg⁻¹ and CO₂–C emission rate of 2.73 kg C L⁻¹ diesel fuel.