About Us | Help Videos | Contact Us | Subscriptions



This article in JEQ

  1. Vol. 31 No. 3, p. 1010-1016
    Received: Mar 29, 2001

    * Corresponding author(s): wallen@ch2m.com
Request Permissions


Temperature and Wetland Plant Species Effects on Wastewater Treatment and Root Zone Oxidation

  1. Winthrop C. Allen *a,
  2. Paul B. Hookb,
  3. Joel A. Biedermanc and
  4. Otto R. Steinc
  1. a CH2M HILL, 555 South Flower Street, Suite 3550, Los Angeles, CA 90071
    b Dep. of Land Resources and Environmental Sciences, Montana State Univ., P.O. Box 173120, Bozeman, MT 59717-3120
    c Dep. of Civil Engineering and Center for Biofilm Engineering, Montana State Univ., P.O. Box 173900, Bozeman, MT 59717-3900


Constructed wetlands are widely used for wastewater treatment, but there is little information on processes affecting their performance in cold climates, effects of plants on seasonal performance, or plant selection for cold regions. We evaluated the effects of three plant species on seasonal removal of dissolved organic matter (OM) (measured by chemical oxygen demand and dissolved organic carbon) and root zone oxidation status (measured by redox potential [Eh] and sulfate [SO2− 4]) in subsurface-flow wetland (SSW) microcosms. A series of 20-d incubations of simulated wastewater was conducted during a 28-mo greenhouse study at temperatures from 4 to 24°C. Presence and species of plants strongly affected seasonal differences in OM removal and root zone oxidation. All plants enhanced OM removal compared with unplanted controls, but plant effects and differences among species were much greater at 4°C, during dormancy, than at 24°C, during the growing season. Low temperatures were associated with decreased OM removal in unplanted controls and broadleaf cattail (Typha latifolia L.) microcosms and with increased removal in beaked sedge (Carex rostrata Stokes) and hardstem bulrush [Schoenoplectus acutus (Muhl. ex Bigelow) A. & D. Löve var. acutus] microcosms. Differences in OM removal corresponded to species' apparent abilities to increase root zone oxygen supply. Sedge and bulrush significantly raised Eh values and SO2− 4 concentrations, particularly at 4°C. These results add to evidence that SSWs can be effective in cold climates and suggest that plant species selection may be especially important to optimizing SSW performance in cold climates.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2002. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyPublished in J. Environ. Qual.31:1010–1016.