About Us | Help Videos | Contact Us | Subscriptions



This article in JEQ

  1. Vol. 32 No. 2, p. 456-465
    Received: May 21, 2002

    * Corresponding author(s): michajl@auburn.edu
Request Permissions


Environmental Fate and Impacts of Sulfometuron on Watersheds in the Southern United States

  1. J. L. Michael *
  1. G.W. Andrews Forestry Sciences Laboratory, 520 DeVall Drive, Auburn, AL 36849


Dissipation of sulfometuron (SM), methyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl] benzoate, in streamflow, sediment, plant tissue, litter, and soil following operational forestry applications at the target rate of 0.42 kg a.i. ha−1 was monitored. Streamflow samples were collected at a weir on the perimeter and 30, 60, and 150 m downstream from the perimeter of the application site. Sulfometuron was detected in streamflow at low levels up to 29 days after treatment (DAT) on the watershed treated with the 75% dispersible granule formulation (Oust; DuPont Chemical Company, Wilmington, DE) and less than 53 DAT on the watershed treated with the experimental formulation (1% pellet). Twenty-four-hour average SM concentration in water ranged from not detected to a maximum of 49.3 μg L−1 Sulfometuron was not detected at quantifiable levels (1 μg L−1) 150 m downstream. Stream sediment, vegetation, litter, and soil were sampled periodically up to 180 DAT. All samples were analyzed for SM by high performance liquid chromatography. Sulfometuron dissipated from these watersheds with half-lives that ranged from 4 d in plant tissues to 33 d in soil. Acidic soil solution on these treated watersheds contributed to their rapid dissipation. Environmental impacts are discussed for these watersheds in the context of available toxicological data.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2003. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyPublished in J. Environ. Qual.32:456–465.