About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in JEQ

  1. Vol. 32 No. 2, p. 662-673
     
    Received: Nov 14, 2001
    Published: Mar, 2003


    * Corresponding author(s): josee.fortin@sga.ulaval.ca
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2003.6620

Evaluation of an Acid Ammonium Oxalate Extraction to Determine Fluoride Resident Concentrations in Soils

  1. Louis Bégin and
  2. Josée Fortin *
  1. Département des Sols et de Génie Agroalimentaire, FSAA, Université Laval, Québec, QC, Canada, G1K 7P4

Abstract

Fluoride depositions near aluminum smelters and other fluoride-emitting plants can lead to fluoride accumulation in soils, which constitutes a risk for ground water contamination. This study was conducted to investigate the capacity of a 0.2 M acid ammonium oxalate solution to selectively and quantitatively extract fluoride accumulated in soils. The recovery of fluoride added to three soils was evaluated following 7- to 28-d incubations. Oxalate extraction was also compared with a total fluoride extraction method, using oxalate-extractable fluoride (Fox) and total fluoride (Ftot) accumulation profiles derived from column percolation experiments. To determine low-level fluoride concentrations without interference from high Al and Fe concentrations, an adapted ion chromatography method was used. Following soil incubations, oxalate extracted 42 to 86% of added fluoride. Recovery varied between soils and, in one soil, increased with added fluoride concentration. Recovery was unaffected by incubation time. Maximum recovery was obtained in a soil high in amorphous Fe and Al, low in clay, and free of carbonate. Lower recoveries were obtained in soils with higher clay or carbonate contents. Only 4 to 8% of Ftot was extracted in untreated samples using Fox, which suggests a high selectivity of this method for added fluoride. In percolation experiments, the use of Fox reduced considerably the background noise associated with Ftot for the evaluation of fluoride accumulation profiles. Because of its high selectivity and despite incomplete fluoride recovery, the use of Fox to determine fluoride resident concentrations in soils may improve environmental monitoring of fluoride accumulation and movement in contaminated soils.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2003. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyPublished in J. Environ. Qual.32:662–673.