About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in JEQ

  1. Vol. 33 No. 1, p. 294-301
     
    Received: Oct 18, 2002
    Published: Jan, 2004


    * Corresponding author(s): Sylvie.Dousset@u-bourgogne.fr
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2004.2940

Alachlor and Bentazone Losses from Subsurface Drainage of Two Soils

  1. S. Dousset *a,
  2. M. Babutb,
  3. F. Andreuxa and
  4. M. Schiavonc
  1. a UMR GéoSol-Microbiologie des Sols INRA A111, Université de Bourgogne, Centre des Sciences de la Terre, 6, boulevard Gabriel, 21 000 Dijon, France
    b Biologie des Systèmes Aquatiques-CEMAGREF, 3, bis quai Chauveau, 69336 Lyon Cedex 09, France
    c Laboratoire Sols et Environnement-ENSAIA-INRA/INPL, BP 172, 54505 Vandœuvre-lès-Nancy Cedex, France

Abstract

Atrazine (6-chloro-N 2–ethyl-N 4–isopropyl-1,3,5-triazine-2,4-diamine) is frequently detected at high concentrations in ground water. Bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] plus alachlor (2-chloro-2′,6′-diethyl-N-methoxymethylacetanilide) is a potential herbicide combination used as a substitute for atrazine. Thus, the objective of this study was to assess the environmental risk of this blend. Drainage water contamination by bentazone and alachlor was assessed in silty clay (Vertic Eutrochrept) and silt loam (Aquic Hapludalf) soils under the same management and climatic conditions. Drainage volumes and concentrations of alachlor and bentazone were monitored after application. Herbicides first arrived at the drains after less than 1 cm of net drainage. This is consistent with preferential flow and suggests that about 3% of the pore volume was active in rapid transport. During the monitoring periods, bentazone losses were higher (0.11–2.40% of the applied amount) than alachlor losses (0.00–0.28%) in the drains of the silty clay and silt loam. The rank order of herbicide mass losses corresponded with the rank order of herbicide adsorption coefficients. More herbicide residues were detected in drainage from the silty clay, probably due to preferential flow and more intensive drainage in this soil than the silt loam. Surprisingly, herbicide losses were higher in the drains of both soils in the drier of the two study years. This could be explained by the time intervals between the treatments and first drainage events, which were longer in the wetter year. Results suggest that the drainage phases occurred by preferential flow in the spring–summer period, with correspondingly fast leaching of herbicides, and by matrix flow during the fall–winter period, with slower herbicide migration.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2004. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyASA, CSSA, SSSA