About Us | Help Videos | Contact Us | Subscriptions

Journal of Environmental Quality Abstract - Organic Compounds in the Environment

Sorption of Apolar Aromatic Compounds to Soil Humic Acid Particles Affected by Aluminum(III) Ion Cross-Linking


This article in JEQ

  1. Vol. 33 No. 4, p. 1314-1321
    Received: May 19, 2003

    * Corresponding author(s): Joseph.Pignatello@po.state.ct.us
Request Permissions

  1. Yuefeng Lu and
  2. Joseph J. Pignatello *
  1. Department of Soil and Water, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511


Sorption of hydrophobic compounds in soils often shows nonlinearity, competition, and hysteresis. Since such behaviors have been associated with organic polymers in glassy state, it has been postulated that some forms of soil humic substances are glassy. The glassy state is favored by properties that decrease the flexibility of macromolecules, such as cross-linking, presence of unsaturated bonds, and high molecular weight. Polyvalent metal ions, which are abundant in soils, may cross-link humic substances by coordinating to multiple functional groups on different strands. Accordingly, we prepared an Al3+–cross-linked humic acid (Al-HA) from the H+ form (H-HA) of a soil humic acid by a flocculation technique that leaves Al ions bound to organic groups. Sorption of naphthalene and 1,2,4-trichlorobenzene (TCB) on H-HA was nonlinear, competitive, and slightly hysteretic, in agreement with previous studies showing glass transition temperatures of humic acids that lie above room temperature. Nonlinearity, competition, and hysteresis were all enhanced in Al-HA, validating the hypothesis that metal ion cross-linking enhances nonideal sorption. Application of a glassy polymer sorption model reveals that cross-linking increases the affinity of solutes for the hole domain relative to the dissolution domain. The results (i) indicate that isolated, purified soil humic acid behaves like a glassy solid, (ii) indicate that metal-ion cross-linking creates a more rigid-chain structure and supports a link between nonideal sorption and the glassy character of soil organic matter, and (iii) underscore the importance of metal ions on humic structure in relation to sorption of hydrophobic organic compounds.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2004. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyASA, CSSA, SSSA