About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in JEQ

  1. Vol. 33 No. 5, p. 1839-1844
     
    Received: May 22, 2003
    Published: Sept, 2004


    * Corresponding author(s): hansennc@mrs.umn.edu
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2004.1839

Rate of Fall-Applied Liquid Swine Manure

  1. P. D. Gessela,
  2. N. C. Hansen *b,
  3. J. F. Moncriefc and
  4. M. A. Schmittc
  1. a Utah Department of Environmental Quality, Division of Water Quality, P.O. Box 144870, Salt Lake City, UT 84114-4870
    b University of Minnesota, WCROC, 46352 State Highway 329, Morris, MN 56267
    c University of Minnesota, Department of Soil, Water, and Climate, 1991 Upper Buford Circle, St. Paul, MN 55108

Abstract

Reducing the delivery of phosphorus (P) from land-applied manure to surface water is a priority in many watersheds. Manure application rate can be controlled to manage the risk of water quality degradation. The objective of this study was to evaluate how application rate of liquid swine manure affects the transport of sediment and P in runoff. Liquid swine manure was land-applied and incorporated annually in the fall to runoff plots near Morris, Minnesota. Manure application rates were 0, 0.5, 1, and 2 times the rate recommended to supply P for a corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotation. Runoff volume, sediment, and P transport from snowmelt and rainfall were monitored for 3 yr. When manure was applied at the highest rate, runoff volume and sediment loss were less than the control plots without manure. Reductions in runoff volume and soil loss were not observed for spring runoff when frozen soil conditions controlled infiltration rates. The reduced runoff and sediment loss from manure amended soils compensated for addition of P, resulting in similar runoff losses of total P among manure application rates. However, losses of dissolved P increased with increasing manure application rate for runoff during the spring thaw period. Evaluation of water quality risks from fall-applied manure should contrast the potential P losses in snowmelt runoff with the potential that incorporated manure may reduce runoff and soil loss during the summer.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2004. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyASA, CSSA, SSSA