About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in JEQ

  1. Vol. 33 No. 6, p. 2165-2173
     
    Received: Mar 16, 2004


    * Corresponding author(s): scomfort@unl.edu
 View
 Download
 Alerts
 Permissions
Request Permissions
 Share

doi:10.2134/jeq2004.2165

Remediating RDX-Contaminated Ground Water with Permanganate

  1. M. L. Adama,
  2. S. D. Comfort *b,
  3. M. C. Morleya and
  4. D. D. Snowc
  1. a Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531
    b School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915
    c Water Science Laboratory, University of Nebraska, Lincoln, NE 68583-0844

Abstract

Ground water beneath the U.S. Department of Energy Pantex Plant is contaminated with the high explosive RDX (hexahydro-1,3,5-trinitro-1,3,5 triazine). The USDOE Innovative Treatment and Remediation Demonstration (ITRD) program identified in situ oxidation by permanganate as a technology fit for further investigation. We evaluated the efficacy of KMnO4 to transform and mineralize RDX by determining degradation kinetics and carbon mass balances using 14C-RDX. Aqueous RDX solutions (2–5 mg L−1) and RDX-contaminated slurries (50% solids, w/v) were treated with KMnO4 at 1000, 2000, 4000, and 20000 mg L−1 Treating an aqueous RDX solution of 2.8 mg L−1 with 20000 mg KMnO4 L−1 decreased RDX to 0.1 mg L−1 within 11 d while cumulative mineralization proceeded for 14 d until 87% of the labeled carbon was trapped as 14CO2 Similar cumulative mineralization was obtained when Pantex aquifer material was included in the solution matrix. Other experiments using 4000 mg KMnO4 L−1 showed that initial RDX concentrations (1.3–10.4 mg L−1) or initial pH (4–11) had little effect on reaction rates. Attempts to identify RDX degradates and reaction products showed that N2O was a product of permanganate oxidation and constituted 20 to 30% of the N balance. Time-course measurements of a 14C-RDX solution treated with KMnO4 revealed few 14C-labeled degradates but through liquid chromatography–mass spectrometry (LC–MS) analysis, we present evidence that 4-nitro-2,4-diaza-butanol is formed. Aquifer microcosm studies confirmed that the transformation products not mineralized by KMnO4 were much more biodegradable than parent RDX. These results indicate permanganate can effectively transform and mineralize RDX in the presence of aquifer material and support its use as an in situ chemical oxidation treatment for the Pantex perched aquifer.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2004. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyASA, CSSA, SSSA