About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in JEQ

  1. Vol. 34 No. 5, p. 1697-1706
     
    Received: Jan 12, 2005


    * Corresponding author(s): htewolde@ars.usda.gov
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2005.0009

Broiler Litter as a Micronutrient Source for Cotton

  1. H. Tewolde *a,
  2. K. R. Sistanib and
  3. D. E. Rowea
  1. a USDA-ARS, 810 Highway 12 East, Mississippi State, MS 39762
    b USDA-ARS, 230 Bennett Lane, Bowling Green, KY 42104

Abstract

Analytically, poultry litter contains nearly all essential micronutrients but the extent of phytoavailability of these nutrients and whether cotton (Gossypium hirsutum L.) and other crop plants can receive adequate amounts of these nutrients from litter is not fully known. The objective of this research was to determine whether cotton receives sufficient amounts of Fe, Cu, Mn, and Zn from litter and estimate the efficiency of cotton in extracting these metal nutrients from litter in the absence of any other source of the micronutrients. The greenhouse research used plastic pots filled with approximately 11 kg of a 2:1 (v/v) sand to vermiculite growing mix. Cotton (cv. Stoneville 474) was grown in the pots fertilized with broiler litter at rates of 30, 60, 90, or 120 g pot−1 in a factorial combination with four supplemental nutrient solution (NS) treatments. The nutrient solutions consisted of full Hoagland's nutrient solution (NS-full); a solution of the macronutrients N, P, K, Ca, and Mg (NS-macro); a solution of the micronutrients Fe, Zn, Mn, Cu, B, and Mo (NS-micro); and water (NS-none). Based on tissue nutrient analysis, a one-time broiler litter application supplied adequate amounts of Fe, Cu, and Mn to bring the concentration of these nutrients in upper leaves within published sufficiency ranges. Zinc, with <17 mg kg−1 concentration in the upper leaves, was the only micronutrient below the established sufficiency range regardless of the rate of applied litter. Cotton extracted Fe and Mn more efficiently than Cu or Zn, removing as much as 8.8% of Fe and 7.2% of Mn supplied by 30 g litter pot−1 In contrast, the extraction efficiency was 1.7% for Cu and 1.9% for Zn. Roots accumulated 58% of the total absorbed Fe and 64% of Cu, and leaves accumulated 32% of the Fe and only 13% of the Cu supplied by litter. In contrast, only 16% of the total absorbed Mn and 23% of Zn accumulated in roots while leaves accumulated 64% of the total Mn and 37% of Zn. These results demonstrate that broiler litter is a valuable source of the metal nutrients supplying Fe, Cu, and Mn in full and Zn in part, but a very large fraction of the litter-supplied metal nutrients remained in the growing mix.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2005. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyASA, CSSA, SSSA