About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in JEQ

  1. Vol. 37 No. 6, p. 2037-2047
     
    Received: Jan 16, 2008
    Published: Nov, 2008


    * Corresponding author(s): moelberm@fes.uwaterloo.ca
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2008.0027

Quantifying Carbon Dioxide and Methane Emissions and Carbon Dynamics from Flooded Boreal Forest Soil

  1. Maren Oelbermann *a and
  2. Sherry L. Schiffb
  1. a Dep. of Environment and Resource Studies, Univ. of Waterloo, Waterloo, ON Canada N2L 3G1
    b Dep. of Earth and Environmental Sciences, Univ. of Waterloo, Waterloo, ON Canada N2L 3G1

Abstract

The boreal forest is subject to natural and anthropogenic disturbances, but the production of greenhouse gases as a result of flooding for hydroelectric power generation has received little attention. It was hypothesized that flooded soil would result in greater CO2 and CH4 emissions and carbon (C) fractionation compared with non-flooded soil. To evaluate this hypothesis, soil C and nitrogen (N) dynamics, CO2 and CH4 mean production rates, and 13C fractionation in laboratory incubations at 14 and 21°C under non-flooded and flooded conditions and its effect on labile and recalcitrant C sources were determined. A ferro-humic Podzol was collected at three different sites at the Experimental Lakes Area, Canada, with a high (19,834 g C m−2), medium (18,066 g C m−2), and low (11,060 g C m−2) soil organic C (SOC) stock. Soil organic C and total N stocks (g m−2) and concentrations (g kg−1) were significantly different (p < 0.05) among soil horizons within each of the three sites. Stable isotope analysis showed a significant enrichment in δ13C and δ15N with depth and an enrichment in δ13C and δ15N with decreasing SOC and N concentration. The mean CO2 and CH4 production rates were greatest in soil horizons with the highest SOC stock and were significantly higher at 21°C and in flooded treatments. The δ13C of the evolved CO213C-CO2) became significantly enriched with time during decomposition, and the greatest degree of fractionation occurred in the organic Litter, Fungal, and Humic forest soil horizons and in soil with a high SOC stock compared with the mineral horizon and soil with a lower SOC stock. The δ13C-CO2 was significantly depleted in flooded treatments compared with non-flooded treatments.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2008. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyAmerican Society of Agronomy, Crop Science Society of America, and Soil Science Society of America