About Us | Help Videos | Contact Us | Subscriptions



This article in JEQ

  1. Vol. 39 No. 5, p. 1585-1593
    Received: Nov 18, 2009

    * Corresponding author(s): yunli@ufl.edu


Phosphorus Release from Ash and Remaining Tissues of Two Wetland Species after a Prescribed Fire

  1. G. D. Liua,
  2. B. Gub,
  3. S. L. Miaob,
  4. Y. C. Li *a,
  5. K. W. Migliaccioa and
  6. Y. Qiana
  1. a Soil and Water Science Dep. and Agricultural & Biological Engineering Dep., Tropical Research and Education Center, Univ. of Florida, 18905 SW 280th St., Homestead, FL 33031
    b South Florida Water Management District, 3301 Gun Club Rd., West Palm Beach, FL 33406. Assigned to Associate Editor Phil Haygarth


Dead plant tissues and ash from a prescribed fire play an important role in nutrient balance and cycling in the Florida Everglades ecosystem. The objective of this study was to assess the dynamic changes in total phosphorus release (TPr) from ash or tissues of either cattail (Typha domingensis Pers.) or sawgrass (Cladium jamaicense Crantz) to water. Natural-dead (senesced-dead) and burning-dead (standing-dead due to a prescribed fire) cattail and sawgrass were collected from highly (H) and moderately (M) impacted zones in the Florida Everglades. This experiment was conducted by incubation and water-extraction of the materials in plastic bottles for 65 d at room temperature (24 ± 1°C). Results showed that 63 to 88%, 17 to 48%, 9 to 20%, and 13 to 28% of total P (TPp) were released as TPr from cattail and sawgrass ash, cattail tissues from the H zone, cattail tissues, and sawgrass tissues from the M zone, respectively. TPp means total P of plant tissues, whereas TPr is total P release from the tissues or ash. Most of the TPr was released within 24 h after burning. The quick release of TPr observed in this experiment may help explain the P surge in the surface water immediately following a fire in the marsh. These findings suggest that prescribed burning accelerates P release from cattail and sawgrass. They also imply that it is very important to keep the water stagnant in the first 24 h to maximize the benefits of a prescribed fire in the Everglades.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2010. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyAmerican Society of Agronomy, Crop Science Society of America, and Soil Science Society of America