Effects of Acidifying Pig Diets on Emissions of Ammonia, Methane, and Sulfur from Slurry during Storage

Abstract

Ammonia (NH₃) volatilization from intensive livestock production is a threat to natural ecosystems. This study investigated pig diet manipulation by 1% (w/w) benzoic acid (BA) amendment and lowering of dietary electrolyte balance through substituting 1.4% (w/w) CaCO₃ with 2.0% (w/w) CaCl₂. Urine and feces were collected separately from 24 pigs fed one of four diets (Control, +BA, +CaCl₂, +BA+CaCl₂) in metabolic cages and mixed as slurry. During 103 d of storage, all acidifying diets consistently reduced pH in the slurry by 0.4 to 0.6 units. There was a strong relationship between slurry pH and NH₃ emissions, which were considerably reduced by the three acidifying diets. The +BA diet decreased NH₃ emission by 28%, the +CaCl₂ diet by 37%, and the combined +BA and +CaCl₂ diet by 40%. Acidifying diets had no effect on S cycling or emission of volatile S compounds under the prevailing conditions of restricted S feeding. Methane (CH₄) emissions were increased by 73% in diets with CaCl₂. An initial delay in CH₄ emissions was investigated in a separate experiment with manipulation of pH (5.4, 6.7, or 8.8) and inoculation with adapted pig slurry (0, 4, 11, or 19%), which showed that methanogenic potential, rather than inhibitory effects of the chemical environment, caused the delay. In conclusion, NH₃ emissions from slurry could be reduced by addition of BA to pig diets or by controlling the dietary electrolyte balance, but there was no additive effect of combining the two strategies. However, CH₄ emissions from slurry may increase with acidifying diets.

Copyright © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.

doi:10.2134/jeq2014.03.0108
Freely available online through the author-supported open-access option. Received 7 Mar. 2014.
*Corresponding author (Jorgen.Eriksen@agrsci.dk).
acidosis (Patience et al., 1987), because protons are secreted into urine by the kidneys to adjust the acid–base status to normal levels. It has been demonstrated that dietary supplementation of Cl decreases dEB and consequently acidifies urine or slurry, reducing NH₃ emissions (Canh et al., 1998).

Eriksen et al. (2010) found that BA amendment to the diet of pigs caused a reduction, albeit transient, in emissions of CH₄, which has a global warming potential 25 times higher than that of CO₂ (Forster et al., 2007). Hence, dietary manipulation could influence greenhouse gas emissions from manure management. Because CH₄ emissions from fresh slurry often show a lag phase (Møller et al., 2004; Moset et al., 2012), the effects of diet manipulation may be more important for CH₄ emissions during long-term storage. On the other hand, fresh slurry is typically mixed with older material in slurry pits, which could enhance decomposition processes, including CH₄ emissions (Zeeman et al., 1988; Sommer et al., 2007) and possibly the effects of dietary manipulation.

The objective of the present study was to quantify the effects of acidifying pig diets on slurry pH and on NH₃ and other emissions during storage. A diet manipulation experiment was performed with BA amendment and lowering of dEB as strategies to reduce NH₃ emissions. Benzoic acid and CaCl₂ have been investigated previously as acidifying agents but, to our knowledge, not in combination. In view of the different mechanisms involved, it was hypothesized that the effects would be additive. We further monitored the turnover of S-containing compounds and organic acids and concurrent emissions of S-containing gases and CH₄ to characterize treatment effects on metabolic pathways in the slurry. A separate experiment examined the effects of slurry pH and of mixing with aged slurry for short-term CH₄ emissions.

Materials and Methods

Animals and Diets

Twenty-four female crossbred pigs were randomly assigned to four different experimental diets (Table 1). The basic diet (major ingredients: barley, wheat, soybean meal, and fat) was optimized according to Danish recommendations for amino acids, Ca, and P (Jørgensen and Tybjerg, 2008). To obtain the four experimental diets, the basic diet was divided into four batches and mixed with BA (Veo Vital, DSM Special Products), CaCO₃, or CaCl₂ as follows: diet Control (no BA, 14 g kg⁻¹ CaCO₃), diet +BA (10 g kg⁻¹ BA, 14 g kg⁻¹ CaCO₃), diet +CaCl₂ (no BA, 20 g kg⁻¹ CaCl₂), and diet +BA+CaCl₂ (10 g kg⁻¹ BA and 20 g kg⁻¹ CaCl₂). The amendments of CaCO₃ and CaCl₂ supplied equal amounts of calcium.

Once the pigs reached a weight of 36 kg, they were fed the experimental diets and were housed individually in pens with concrete floors and straw as rooting material. Diets were fed ad libitum, and there was free access to water at all times. From 60 to 66 kg, the pigs were housed in stainless steel balance cages for quantitative collection of urine and feces. After 5 d of adaptation, all pigs were fitted with urine bladder catheters allowing separate collection of feces and urine into a closed container for 7 d. The pigs were fed twice daily at 0800 and 1430 h, and they had free access to demineralized water. To supply the animals with similar amounts of nutrients, allowing estimation of nutrient balance, the offered daily rations were 1800, 1818, 1810, and 1828 g feed d⁻¹ for the treatments Control, +BA, +CaCl₂ and +BA+CaCl₂, respectively. The pigs were weighed at the beginning and at the end of the 12-d period. Urine was weighed and collected once daily. Feed residuals and feces were collected twice daily. Urine and feces was separately pooled from each individual pig and stored at 3°C until the end of the collection period, where

Table 1. Feedstuff and chemical composition of diets supplemented with 0 or 10 g kg⁻¹ benzoic acid (BA) and two calcium sources (CaCO₃ or CaCl₂).

<table>
<thead>
<tr>
<th>Feedstuff composition, g 100 g⁻¹</th>
<th>Control</th>
<th>+BA</th>
<th>+CaCl₂</th>
<th>+BA+CaCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>56.2</td>
<td>56.2</td>
<td>56.2</td>
<td>56.2</td>
</tr>
<tr>
<td>Wheat</td>
<td>23.0</td>
<td>23.0</td>
<td>23.0</td>
<td>23.0</td>
</tr>
<tr>
<td>Soybean meal, toasted dehulled</td>
<td>17.7</td>
<td>17.7</td>
<td>17.7</td>
<td>17.7</td>
</tr>
<tr>
<td>Fat</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>L-lysine HCl (78%)</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>DL-methionine (99%)</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>L-threonine (99%)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Monocalciumphosphate</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Vitamin and mineral mix</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Phytase</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>1.40</td>
<td>1.40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0</td>
<td>0</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>BA</td>
<td>0</td>
<td>1.00</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Chemical composition, g 100 g⁻¹ DM‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>0.00</td>
<td>0.82</td>
<td>0.04</td>
<td>0.89</td>
</tr>
<tr>
<td>pH</td>
<td>6.06</td>
<td>5.54</td>
<td>5.20</td>
<td>4.72</td>
</tr>
<tr>
<td>dEB,‡ meq kg⁻¹ DM</td>
<td>185</td>
<td>182</td>
<td>–124</td>
<td>–91</td>
</tr>
</tbody>
</table>

† Analyzed concentration of benzoic acid and measurement of pH as double analysis. DM, dry matter.
‡ Dietary electrolyte balance. Calculated as (Na⁺/23.0 + K⁺/39.1 – Cl⁻/35.5) x 1000, on the basis of analyzed concentrations in g kg⁻¹.
representative samples from each pig were stored at −20°C until analysis of total N and total ammoniacal N (TAN).

Storage Experiment

Immediately before storage (Day 0), a batch of pig slurry from each individual pig (i.e., six replicates per treatment) was prepared by mixing urine and feces in amounts proportional to the excretion, and portions of 20 kg were transferred to 25-L polyethylene containers and stored at 20°C for 103 d. The containers had lids with a single 10-mm hole to allow the escape of gases produced in the slurry during storage.

After 1, 5, 12, 19, 27, 43, 57, 76, and 103 d of storage and after gentle stirring, 100-mL aliquots of slurry were collected from each of the containers for chemical analyses. Then 600-mL subsamples were taken for measuring gaseous emissions as described below. No special precautions were taken to exclude air during sampling. Subsamples for chemical analyses were processed immediately as described below to minimize subsequent oxidation effects.

Chemical Analyses of Stored Slurry

The redox potential (Eh) was measured using a Pt electrode against a calomel reference electrode, and pH was measured with a glass electrode.

For analysis of dissolved sulfide and sulfate (sulfate on Days 1, 12, 27, 43, and 103), a centrifuge tube was filled with slurry, closed with a diffusion-tight lid, and centrifuged for 10 min at 5000 g at 4°C. From the supernatant, 10 mL was quickly transferred to 50 mL of 20% zinc acetate and stored cold until analysis of precipitated ZnS. For this analysis, a 5-g sample of the zinc acetate–preserved sample was transferred to a 300-mL diffusion flask. A test tube with 15 mL oxygen-free 3% alkaline zinc acetate solution was placed inside the diffusion flask before sealing with a rubber stopper. The flask was evacuated and filled with N2, three times to obtain anaerobic conditions. Using a syringe with a hypodermic needle, 15 mL oxygen-free concentrated hydrochloric acid was added to the slurry, and the flask was left overnight at 20°C. The sulfide trap was then removed, and sulfide concentrations were determined using the methylene blue method as described by Cline (1969).

For sulfate analysis, 30 mL of the zinc acetate–preserved sample was centrifuged at 12,000 rpm for 2 h, and activated charcoal was added to the supernatant to remove dissolved organic matter. The sulfate content was determined turbidimetrically after acidification with hydrochloric acid as described by Hoque et al. (1987). Total S in slurry was determined by turbidimetry after acidification with hydrochloric acid as described by Hoque et al. (1987).

For analysis of dissolved sulfide and sulfate (sulfate on Days 12, 27, and 43 on a gas chromatograph (Clarus 500, PerkinElmer) with an amperometric S detector. The S-compounds (H2S, methanethiol, dimethylsulfide, dimethyl disulfide, and dimethyl trisulfide) were separated on a capillary column (30 m, 0.4 μm polydimethylsiloxane film) with ultrapure helium as carrier gas (8.2 mL min⁻¹ at 40°C). For calibration, a permeation chamber (Dynacal) containing dimethyl sulfide (DMS) (release rate: 73 ng min⁻¹ at 50°C) was used. The system has an equimolar response to S compounds according to the supplier. The limit of detection was approximately 10 ppbw, and background samples were run frequently.

The bags were analyzed for CH4 concentration using a Shimadzu GC-14 equipped with a Porapak Q column (50°C) and flame ionization detector (150°C). The carrier was ultrapure helium at 60 mL min⁻¹.

Controls of Short-Term Methane Emissions

A separate incubation experiment was performed to investigate if the initial delay in CH4 emissions observed in all treatments during slurry storage was due to the inhibitory effects of pH on methanogens in fresh slurry (in which case pH adjustment should modify CH4 emissions) or if the delay was rather due to a lack of methanogens adapted to the slurry environment.

Fresh urine and feces were collected from pigs on a diet similar to the control diet in the previous storage experiment. Three pH levels were established by the addition of hydrochloric acid: an unamended control at pH 8.8 and two hydrochloric acid–amended treatments at pH 6.7 and 5.4. These treatments were combined with four levels of inoculum corresponding to 0, 4, 11, and 19% by weight. The inoculum was collected 3 mo into an ongoing storage experiment with slurry from fattening pigs showing CH4 emissions of 5 mg CH4-C kg⁻¹ d⁻¹ volatile S h⁻¹ a few weeks before sampling (unpublished data). There was no additional adjustment of pH after this amendment. For each combination of pH and inoculum, 25 mL of fresh slurry and inoculum as required was added in triplicate to 120-mL flasks that were then flushed with N2 for 15 min and closed with a septum and screw cap. A hypodermic needle was inserted in the septum to prevent pressure buildup while minimizing exposure to oxygen. The flasks were incubated at 20°C in the dark without agitation. After 0, 2, 4, 8, 10, and 14 d, the needles were removed, the headspace was flushed with N2 for 15 min, and the flasks were closed. For determination of CH4 emission rates, headspace CH4 concentrations were then determined in duplicate and again 2 h later using the procedure described above. Slurry pH was measured in all flasks by the end of the incubation period.
Statistical Analysis

Data on feces, urine, and slurry N content were analyzed using a generalized linear model procedure of SAS (SAS Institute, 1999). Slurry characteristics (pH, sulfide, sulfate, total S, and organic acids) and gas concentrations (NH₃, CH₄, H₂S, and VSC) were analyzed by a repeated measures ANOVA using the REPEATED statement in the PROC MIXED procedure of SAS (Littell et al., 2002) with sampling time, diet, and interactions between those as fixed effects and cage number as random effect. The type of covariance structure was selected based on Akaike’s Information Criterion. The covariance matrix was estimated using the Restricted Maximum Likelihood method. When a significant difference was found at the 0.05 significance level, pairwise comparisons between treatments and sampling times were performed by t tests. The analysis of H₂S and VSC was made by using the Restricted Maximum Likelihood method. When a significant difference was found at the 0.05 significance level, pairwise comparisons between treatments and sampling times were performed by t tests. The analysis of H₂S and VSC was made on log-transformed data to obtain homogeneity of variance, but the results presented in figures are arithmetic means.

Results

Diet Effects on Manure Production, pH, and Redox Potential

The diets significantly affected the production of feces (P < 0.001) and urine (P < 0.05), with 22% less feces and 26% more urine produced by animals fed the CaCl₂-amended diet compared with the control and with 40% less feces in the +BA+CaCl₂ diet (Table 2). The pH of feces was unaffected by diet, whereas the pH of urine was reduced by the +CaCl₂ diet (Table 2). In slurry, the initial pH (Fig. 1) was not significantly reduced by BA, whereas CaCl₂ amendment initially decreased pH by 0.6 units and BA+CaCl₂ amendment by 1 unit.

The pH of slurry from pigs on the control diet was initially high (around pH 8.5) (Fig. 1); pH then gradually dropped by around 1 pH unit before increasing to a final value of around pH 8.2. All acidifying diets consistently (P < 0.001) reduced pH in the slurry by 0.4 to 0.6 units compared with the control diet; across the experiment there were no significant differences among these three diets (Fig. 1). The +BA+CaCl₂ diet resulted in an initial decrease of slurry pH of 1 unit, but this effect quickly narrowed to a reduction around 0.5 pH unit. The effect was prolonged, and by the last day of sampling (Day 103) a difference of 0.4 pH units between acidifying diets and the control diet remained.

The redox potential was measured in all samples to evaluate the redox status of each system (results not shown). Following Bohn et al. (1985), pE+pH was calculated, where pE = Eh/59.2. A value of 0 in aqueous systems indicates completely reduced conditions, and a value of 20.78 indicates completely oxidized conditions (Bohn et al., 1985). Except for the first sampling, values for pE+pH were within a narrow range of 3.5 to 4.5, with no significant difference among diets.

Diet Effects on Organic Acids

In diets with BA alone or BA+CaCl₂, hippuric acid was elevated (Fig. 2) at the first sampling only (P < 0.001). By Day 7, hippuric acid had disappeared but was almost quantitatively replaced by BA, a product of hippuric acid degradation. Benzoic acid concentrations declined over time (Fig. 2) but were elevated in +BA and +BA+CaCl₂ treatments throughout the study (P < 0.001). The +BA treatment increased acetic (P < 0.001), isobutyric (P < 0.001), butyric (P < 0.05), and valerianic acid (P < 0.001) concentrations compared with the other diets and increased succinic acid (P < 0.01) compared with the +CaCl₂ diets. The +CaCl₂ diets caused isovalerianic acid concentrations to be lower compared with the +BA (P < 0.001) and the control diet (P < 0.01). There were no effects of the acidifying diets on the concentrations of formic, propionic, isocapronic, and lactic acids.

Diet Effects on Sulfur Compounds

The sulfate content of pig slurry was not affected by type of diet (Fig. 3). From Day 12 and onward, decreasing sulfate contents indicated sulfate reduction activity, initially high but then at declining rates in the last part of the experiment. Also, independent of diet, an accumulation of sulfide was observed (Fig. 3). Total S content was determined at Day 1 and Day 103 (results not shown). There was a significant decline in total S content between these days (P < 0.001), but the total S content and loss of S was independent of diets. The initial total S content

| Table 2. Mean daily production during the 7-d collection period and characteristics of feces, urine, and the resulting slurry from pigs on diets supplemented with 0 or 10 g kg⁻¹ benzoic acid (BA) and two calcium sources (CaCO₃ or CaCl₂). |
|-----------------|------------------------|------------------------|------------------------|
| **Diet†** | Control | +BA | +CaCl₂ | +BA+CaCl₂ |
| **Feces** | | | | |
| Production, g d⁻¹ | 882 ± 43a† | 825 ± 49a | 699 ± 85b | 526 ± 82c |
| Total N, g kg⁻¹ DM‡ | 33.7 ± 0.8 | 33.6 ± 0.8 | 33.1 ± 0.8 | 35.3 ± 0.8 |
| pH | 6.85 ± 0.2 | 6.56 ± 0.16 | 7.33 ± 0.18 | 7.28 ± 0.25 |
| **Urine** | | | | |
| Production, kg d⁻¹ | 5.4 ± 0.6ab | 5.0 ± 0.3b | 6.3 ± 0.4a | 6.0 ± 0.6ab |
| Total N, g kg⁻¹ | 3.5 ± 0.3 | 3.3 ± 0.1 | 3.2 ± 0.2 | 3.1 ± 0.3 |
| pH | 8.24 ± 0.16 | 7.93 ± 0.3a | 6.91 ± 0.2b | 6.46 ± 0.2b |
| **Slurry** | | | | |
| Total N, g kg⁻¹ | 3.6 ± 0.3 | 3.6 ± 0.1 | 3.1 ± 0.18 | 3.6 ± 0.3 |
| NH₄⁻N, g kg⁻¹ | 2.3 ± 0.2 | 2.0 ± 0.12 | 2.2 ± 0.12 | 1.8 ± 0.07 |
| DM content, g kg⁻¹ | 19.9 ± 2.1b | 26.5 ± 1.2ab | 19.9 ± 1.3b | 28.2 ± 4.4a |

† Mean ± SE (n = 6). Values with different letters within rows are significant at P < 0.05.
‡ Dry matter.

www.agronomy.org • www.crops.org • www.soils.org
was 200 ± 7 µg S g⁻¹ (mean ± SEM; n = 24), and the final S content was 138 ± 6 µg S g⁻¹ after 103 d of storage.

Diet Effects on Emissions

Emissions of three VSC (H₂S, methanethiol [MT], and DMS) were observed, whereas dimethyl disulfide and dimethyl trisulfide could not be detected in this study. The effect of diet were not identified for any of the three S gases (Fig. 4), and only for DMS was there an effect of sampling day (P < 0.001), with significantly highest DMS emission at Day 12.

The N contents of the slurries were not influenced by diet, and on average they contained 3.4 g N kg⁻¹ (SEM = 0.1; n = 24), of which 62% was in the form of NH₄⁺–N (Table 2). As expected, there was a strong relationship between slurry pH and NH₃ emissions. Ammonia release to the airflow established over slurry samples during measurements was considerably reduced (P < 0.05) by all three acidifying diets (Fig. 5). On average, the +BA diet decreased NH₃ emission rates by 28%, the +CaCl₂ diet by 37%, and the combined +BA+CaCl₂ diet by 40%. The concentration measured in air above the control slurry corresponded to an emission rate of 14 g NH₃–N m⁻² d⁻¹.

The pH in pig slurry increased over the first week of storage in all dietary treatments, whereas CH₄ emissions remained low. A gradual decline in pH occurred over several weeks, but temporal dynamics differed among treatments (i.e., pH of the control and +BA treatments reached a minimum after around 60 d, whereas pH in the two treatments with CaCl₂ dropped faster and reached a minimum after 4 wk). A peak in CH₄ emission rates was observed on Day 27 in all four treatments (Fig. 5), which coincided with maximum VFA accumulation, but unlike CH₄ emissions the levels of C₂–C₅ fatty acids declined slowly or remained constant (Fig. 2). Methane emissions were significantly higher in the +CaCl₂ and +BA+CaCl₂ treatments compared with the control (P < 0.001) (on average 73%), whereas BA alone had no effect on CH₄ emissions.

Effects of pH and Inoculum on Methane Emissions

The pH of the control treatments without pH adjustment was initially 8.8, and the pH of the two adjusted treatments was 6.7 and 5.4, respectively. In control treatments the pH had dropped slightly during the experiment, whereas the pH of acidified slurries increased; final pH (not shown) of the three treatments were 8.5 ± 0.03, 7.7 ± 0.13, and 6.6 ± 0.09 (mean ± SEM), respectively. Hence, acidified slurries remained significantly different from the control and from each other during the experiment. Methane emission rates increased to a maximum after 8 d, with no apparent lag phase. Emissions were strongly affected by time (P < 0.001), by pH (P < 0.001),
Fig. 3. Concentrations of sulfate and sulfide in stored pig slurry as influenced by dietary acidification using benzoic acid (BA) and CaCl₂. Error bars: SEM (n = 6).

Fig. 4. Volatile sulfur compounds emissions to airflow across the surface of stored pig slurry as influenced by dietary acidification using benzoic acid (BA) and CaCl₂. Error bars: SEM (n = 3).
and by the addition of inoculum ($P < 0.001$), and there were significant interactions between these variables. The intermediate pH always exhibited the highest CH$_4$ emission rates (Fig. 6). Without inoculum, emissions remained low, with minor activity at pH 6.7 only. At 4 and 11% inoculum, the lowest pH (5.4) caused a reduction in CH$_4$ emissions, whereas the intermediate pH (6.7) stimulated CH$_4$ emissions compared with the control. At 19% inoculum there was a stimulation of CH$_4$ emissions at low and, particularly, intermediate pH. Across all three pH levels, the accumulated CH$_4$ emission was, respectively, 15, 27, and 44 times higher in the presence of 4, 11, and 19% inoculum.

Discussion

Ammonia Emissions

The most important slurry properties controlling NH$_3$ emissions to the atmosphere are TAN and pH. The latter is controlled by the buffering capacity of dissolved carbonates, organic acids, ammoniacal N, and organic particles (Sommer, 2013), all of which are affected by feeding practice. The increase in slurry pH of all dietary treatments during the first week of storage was probably due to mineralization of organically bound...
N (Sommer et al., 2007). The present experiment demonstrated that dietary interventions can decrease slurry pH to an extent that emissions of NH₃ are significantly reduced. The observed decrease in slurry pH may be explained by a decrease in the pH of urine (Kristensen et al., 2009; Nørgaard et al., 2010a, 2010b). The pH drop resulted in significant reductions in NH₃ emissions of 28 to 40%, least for +BA and most for the two treatments with CaCl₂. In a related study, addition of 2% BA to pig diets reduced NH₃ emissions by 60 to 70% (Eriksen et al., 2010), in accordance with the findings of Hansen et al. (2007), who used 3% BA in a feeding experiment where NH₃ emissions were monitored from pens with finishing pigs. Hansen et al. (2007), however, did not find significant effects of 1% BA, which is the maximum approved level within the European Union (European Commission, 2007).

The manipulation of dietary electrolyte balance has been investigated as a means to reduce slurry pH (Canh et al., 1998), and in the present study this strategy was more efficient than addition of BA. The mechanisms behind the effects of BA and CaCl₂ additions are different, and therefore, in theory, the effects could be additive. The initial pH of the +BA+CaCl₂ diet was in fact significantly lower than the pH of any other treatment (Fig. 1). However, this difference in slurry pH, observed immediately on mixing, disappeared within the first few days of storage, probably due to the buffering capacity of bicarbonate produced during decomposition of the feces (Sommer and Husted, 1995). No significant difference was found between the +CaCl₂ and +BA+CaCl₂ treatments regarding NH₃ emissions.

Methane Emissions

A previous report showed a transient inhibition of CH₄ emissions during storage of slurry from pigs on a diet with 2% BA (Eriksen et al., 2010). In the present study there was, relative to the control treatment, no effect of 1% BA (treatment +BA). Toxicity of BA is related to the undissociated form, and, with a pKa of 4.2, the concentrations of undissociated BA in slurry from pigs fed 2% BA would have been ~10 mg kg⁻¹, which is around the threshold where inhibition has been observed with coliform bacteria and a microalga (Knarreborg et al., 2002; Lee and Chen, 2009). Toxic effects of 1% BA would therefore not be expected, leaving only the effects of pH.

With acidifying diets +CaCl₂ and +BA+CaCl₂, there was an increase in CH₄ emissions during the first month of storage. The stimulation of CH₄ emissions in treatments +CaCl₂ and +BA+CaCl₂ was surprising because the difference in pH compared with the +BA treatment was 0.5 units (maximum). Sprott and Patel (1986) found that Ca²⁺ partly alleviated inhibition from NH₃ in pure cultures of several methanogens. This could also have been the case in the storage experiment because initial concentrations of free NH₃ were in a range (50–500 mg kg⁻¹) where methanogens unadapted to NH₃ may be inhibited (Hashimoto, 1986).

All treatments of the storage experiment showed a delay in CH₄ emissions of 1 to 2 wk, indicating that the chemical environment alone did not determine methanogenic activity. The importance of methanogenic potential was investigated in separate incubations of fresh pig slurry with four levels of inoculum and three pH levels (Fig. 6). Here, CH₄ emission rates were positively related to inoculum rate and occurred with no apparent lag phase. The highest CH₄ emission rates always occurred at pH 6.7 (i.e., close to the typical pH optimum of methanogens) (Koster and Koomen, 1988), but in the absence of inoculum CH₄ emissions were insignificant throughout the 14-d incubation period. Methanogens adapted to the slurry environment may tolerate high levels of free NH₃ (van Velsen, 1979; Hashimoto, 1986), and the significant increase in CH₄ emissions when an inoculum of adapted methanogens was introduced implies that under practical storage conditions the emission of CH₄ from fresh excreta would be more sensitive to slurry pH, and thus to dietary manipulation, than observed in the present storage experiment.

Organic Acids

There was initially a rapid accumulation of volatile fatty acids (C2–C5) that was probably due to the imbalance between methanogenesis and acidogenesis and acetogenesis. The concentrations of acetic, propionic, butyric, and valeric acid were highest in slurry from pigs fed the BA-amended diet and lowest in slurry from CaCl₂–amended diets. Also, the concentrations of isobutyric, isovalerican and isocapronic acid, which are products of protein fermentation (Macfarlane and Macfarlane, 2003), were highest in slurry from the BA-amended diets. This may indicate that organic matter degradation was delayed in slurry from the +BA treatment, possibly as a result of inhibition by BA in the digestive system, as indicated above (Knarreborg et al., 2002).

Sulfur Turnover

It has been found that acidification of slurry to pH 5.5 inhibits sulfate reduction (Eriksen et al., 2008, 2012; Ottosen et al., 2009). Contrary to these observations, the dietary acidification in this experiment of 0.4 to 0.6 pH units did not appear to influence sulfate reduction (Fig. 3). From an initial level of around 150 µg S g⁻¹ (equivalent to 4.5 mmol L⁻¹ SO₄²⁻), it decreased to around 25 µg S g⁻¹ during the storage period, with a concurrent increase in sulfide for all diets. It thus appears that acidification effects above pH 7 do not greatly affect sulfate reduction in slurry.

For all diets, about 30% of the total S content was lost during the storage period as a result of volatilization of H₂S and organic S compounds. However, the absolute levels were low compared with previous investigations regarding total S content (Eriksen et al., 1995) and S emissions (Eriksen et al., 2008). An initial level of total S of 200 µg S g⁻¹ may therefore indicate that the dietary ingredients, as well as the diets, did not contain excessive levels of S.

Previous studies have demonstrated an interaction between methanogens and S emission probably caused by the ability of methanogens to demethylate organic S compounds (Higgins et al., 2006; Eriksen et al., 2010). A similar interaction was not evident in our data, although at Day 27 methanogenic activity, as revealed by high CH₄ emission rates in +CaCl₂ and +BA+CaCl₂ treatments, was accompanied by low MT and DMS emission levels. Overall, however, this study did not provide evidence for changes in the odor profile of slurry from acidifying feeding caused by volatile S compounds. It has been demonstrated that elevated sulfate contents in slurry (700–900 µg g⁻¹) due to
abundant S in feed, combined with a pH reduction from 8.5 to 7.5, resulted in a considerable increase in especially MT (Eriksen et al., 2010). This is unfortunate because MT is a very strong odorant with an odor threshold of only 2.2 μg m⁻³, compared with 26 for H₂S (Devos et al., 1990).

Practical Implications

Acidifying diets were found to reduce NH₃ emissions by 28 to 40%, and it is thus a means to control emissions from pig production, independently or in combination with other management tools. Methane emissions were stimulated in pig production, independently or in combination with other feed additives. This trade-off between NH₃ and greenhouse gas emissions can be avoided by a further lowering of slurry pH in the slurry pit with sulfuric acid.

A prerequisite for successful use of acidifying diets is that animal performance and health are not impaired. In the present experiment, a tendency for lower feed intake was seen during the collection period when pigs were fed CaCl₂, and this corresponds well with early findings that low dietary electrolyte balance reduces appetite (Patience and Wolynetz, 1990). The increased volume of urine produced by pigs fed the CaCl₂ diets was likely caused by an increased water intake. However, the effect on feed intake and other production parameters should be confirmed in a large-scale experiment. Feeding either BA or CaCl₂ alone did not affect bone strength, whereas the combined effect of BA and CaCl₂ may negatively affect bone strength during long-term feeding (Nørgaard et al., 2014). Benzoic acid also has an antimicrobial effect causing weight gain in pigs (Kluge et al., 2006), which indicates that dietary BA or diets with reduced deEB are cost-effective NH₃ mitigation options.

Conclusions

Ammonia emissions from pig slurry could be significantly reduced by the addition of BA to pig diets or by controlling the dietary electrolyte balance through replacement of CaCO₃ by CaCl₂. There was an additive effect of combining the two dietary interventions (BA and CaCl₂ amendment) on initial slurry pH but not on NH₃ emissions. The acidifying diets had no effect on S cycling or emission of VSC under the prevailing conditions of restricted S feeding. In contrast, CaCl₂ amendment, but not BA, significantly increased CH₄ emissions. This trade-off between NH₃ and greenhouse gas emissions can be avoided by a further lowering of slurry pH in the slurry pit with sulfuric acid.

Acknowledgments

The authors thank Bodil Steensgaard, Susan Ottesen, Karin Dyberg, and Karin Durup for skilled technical assistance. This study was partly funded by the Ministry of Food, Agriculture and Fisheries.

References

