Validation of Sensor-Directed Simulated Spatial Annealing Soil Sampling Strategy.

Elia Scudiero a,*, Scott M. Lesch b, and Dennis L. Corwin a

a USDA-ARS, United States Salinity Laboratory, 450 West Big Springs Rd., Riverside, CA, 92507-4617, USA

b Riverside Public Utilities, 3435 14th St., Riverside, CA 92501, USA

* Corresponding author at: USDA-ARS, United States Salinity Laboratory, 450 West Big Springs Rd., Riverside, CA, 92507-4617, USA. E-Mail: elia.scudiero@ars.usda.gov; scudiero@dmsa.unipd.it. Tel.: +1 (951) 369-4864

Supplemental Material

Contents:

Supplemental Figure 1. Maps of soil apparent electrical conductivity for the 0-0.75 m (EMh) and for the 0-1.5 m (EMv) soil profiles.

Supplementary Figure 2. Principal component analysis of the soil apparent electrical conductivity for the 0-0.75 and for the 0-1.5 m soil profiles.

Supplemental Figure 3. Gradient map of the principal component analysis of the soil apparent electrical conductivity data at a) 2×2, b) 4×4, and c) 6×6 m block support. The evolution with resolution of the map average cell gradient is shown in quadrant d).
Supplemental Fig. S1. Maps of soil apparent electrical conductivity for the 0-0.75 m (EMₜ) and for the 0-1.5 m (EMᵥ) soil profiles.
Supplemental Fig. S2. Map of the first component of the principal component analysis (PCA) of the soil apparent electrical conductivity (ECa) for the 0-0.75 and for the 0-1.5 m soil profiles.
Supplemental Fig. S3. Gradient map of the principal component analysis of the soil apparent electrical conductivity data at a) 2×2, b) 4×4, and c) 6×6 m block support. The evolution with resolution of the map average cell gradient is shown in quadrant d).