Role of dissolved organic matter in the release of chromium from schwertmannite: kinetics, repartition and mechanism

Yingying Xie¹, Guining Lu¹,²,³*, Han Ye¹, Chengfang Yang¹, Xiaoyun Yi¹,², Zhi Dang¹,²,³*

1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
2. The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
3. Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, China

* Corresponding authors at: School of Environment and Energy, South China University of Technology, Guangzhou 510006, China. Tel.: +86-20-39380569; Fax: +86-20-39380508;
E-mail addresses: GNLu@foxmail.com (G. Lu), chzdang@hotmail.com (Z. Dang)
Supplemental Fig. S1. Three-dimensional excitation-emission matrix fluorescence spectra (3DEEM) of water sample (The water samples were taken from Hengshi river affected by AMD. Hengshi river was located in Shaoguan Dabaoshan Mine, China. The main peak was identified at excitation/emission wavelengths (Ex/Em) of 225-250/340–350 nm (Peak A). It is associated with the aromatic amino acid tryptophan.
Supplemental Fig. S2. UV–Vis adsorption spectra of Fe-L-trp (The peaks at 226 nm and 285 nm referred to the complexation of L-trp with Fe, and the different colored lines indicated the different concentration of L-trp (0.1, 0.5, 1, 2 and 5 mM from the bottom to the top).

Supplemental Fig. S3. Variations of Cr(VI) in the solution ((a) the first phase from 0-1440 min; (b) the second phase from 1 to 60 d)