Supplemental Material

Spatially-Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source

Stephen R. Sutton1,2, Antonio Lanzriotti2, Matthew Newville2, Mark L. Rivers1,2,

Peter Eng2, and Liliana Lefticariu3

1Department of Geophysical Sciences

2Center for Advanced Radiation Sources (CARS)

University of Chicago, Chicago, IL 60637 USA

3Department of Geology and Environmental Resources and Policy Program, Southern Illinois University at Carbondale, Carbondale, IL 62901 USA

Email address of corresponding author Stephen Sutton: sutton@cars.uchicago.edu

Number of pages: 6

Number of figures: 4

Number of tables: 1
Supplemental Fig. S1: Overview schematic of the GSECARS Sector 13 layout after the canted undulator upgrade. The sector consists of a bending magnet port (13BM) with two stations (13BM-C, 13BM-D) and an insertion device port (13ID) with three stations (13ID-C, 13ID-D, and 13ID-E). The X-ray microprobe station 13ID-E was produced by installing a wall in the existing 13ID-C station. Four stations can operate simultaneously: 13BM-C, 13BM-D, 13ID-E and 13ID-C or D.
Supplemental Table S1: Overview of Sector 13 Instruments and Techniques

<table>
<thead>
<tr>
<th>Station</th>
<th>Instrument</th>
<th>Technique</th>
<th>Source</th>
<th>Energy Range (keV)</th>
<th>Monochromator</th>
<th>Max Flux @ 10 keV (photons/sec)</th>
<th>Spot Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-ID-C</td>
<td>General Purpose Diffractometer</td>
<td>Interface scattering, grazing incidence XAFS, Inelastic x-ray scattering</td>
<td>Undulator 1 (3.0 cm)</td>
<td>4-45</td>
<td>DCM Si(111)</td>
<td>1 x 10^{13}</td>
<td>60x20 µm focused</td>
</tr>
<tr>
<td>13-ID-D</td>
<td>Laser-heated Diamond Anvil Cell, Multianvil Press (1000-ton)</td>
<td>DAC: monochromatic diffraction, emission spectroscopy Press: monochromatic & energy dispersive diffraction, radiography</td>
<td>Undulator 1 (3.0 cm)</td>
<td>4-45</td>
<td>DCM Si(111)</td>
<td>1 x 10^{13} unfocused; 1 x 10^{11} focused</td>
<td>3x2 µm focused; 3x1 mm unfocused</td>
</tr>
<tr>
<td>13-ID-D</td>
<td>Laser-heated Diamond Anvil Cell, Multianvil Press (1000-ton)</td>
<td></td>
<td>10-75</td>
<td>DCM Si(311)</td>
<td>2 x 10^{12} unfocused; 2 x 10^{10} focused</td>
<td>3x2 µm focused; 3x1 mm unfocused</td>
<td></td>
</tr>
<tr>
<td>13-ID-E</td>
<td>X-ray Microprobe</td>
<td>Trace element microanalysis, fluorescence microtomography, microXAFS, microdiffraction</td>
<td>Undulator 2 (3.6 cm)</td>
<td>2.4-28</td>
<td>DCM: Si(111)</td>
<td>6 x 10^{12}</td>
<td>1x1 µm focused</td>
</tr>
<tr>
<td>13-ID-E</td>
<td>X-ray Microprobe</td>
<td></td>
<td>5.4-28</td>
<td>DCM: Si(311)</td>
<td>1 x 10^{12}</td>
<td>1x1 µm focused</td>
<td></td>
</tr>
<tr>
<td>13-ID-D</td>
<td>General Purpose Diffractometer</td>
<td>Interface scattering, diamond anvil cell diffraction (single crystal), powder diffraction</td>
<td>Bending Magnet</td>
<td>15</td>
<td>Si(111)</td>
<td>1 x 10^{12} @ 15 keV</td>
<td>23x28 µm focused; 10x3 mm unfocused</td>
</tr>
<tr>
<td>13-ID-D</td>
<td>General Purpose Diffractometer</td>
<td></td>
<td>30</td>
<td>Si(311)</td>
<td>8 x 10^{11} @ 30 keV</td>
<td>26x28 µm focused; 10x3 mm unfocused</td>
<td></td>
</tr>
<tr>
<td>13-ID-D</td>
<td>General Purpose Diffractometer</td>
<td></td>
<td>45</td>
<td>Si(333)</td>
<td>1 x 10^{12} @ 45 keV</td>
<td>26x28 µm focused; 10x3 mm unfocused</td>
<td></td>
</tr>
<tr>
<td>13-BM-C</td>
<td>Laser-heated Diamond Anvil Cell, Multianvil Press (250-ton), diamond anvil cell, XAFS</td>
<td>Tomography: absorption & phase-contrast; Press: monochromatic & energy-dispersive diffraction, tomography & radiography; DAC: monochromatic diffraction, Brillouin spectroscopy,</td>
<td>Bending Magnet</td>
<td>4.5-70</td>
<td>DCM Si(111)</td>
<td>1 x 10^{9}</td>
<td>6x12 µm focused; 50x4 mm unfocused</td>
</tr>
<tr>
<td>13-BM-D</td>
<td>Laser-heated Diamond Anvil Cell, Multianvil Press (250-ton), diamond anvil cell, XAFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Figure S2: On-axis brilliance for undulators with various periods. GSECARS has U3.0 (purple) installed in the downstream position to supply the high energy branch (13ID-C/D) and U3.6 (similar to U3.55, black) in the upstream position to supply the lower energy branch (13ID-E).
Supplemental Figure S3: X-ray optics layout (not to scale) of the 13ID canted undulator insertion device port. The 13ID XRM uses the upstream, U36 undulator (outboard beam). This beam is monochromatized by a Si(111)/Si(311) cryogenic, fixed offset instrument and then deflected further outboard by 12 mrad using two deflecting mirrors. A shielded pipe carrying the 13ID-C/D beam downstream resides ~300 mm inboard of the XRM beam position within the 13ID-E station.

Mono energy range 2.3-29 keV

Mono energy range 5 - 65 keV and 100 W white beam
Supplemental Figure S4: Comparison of brilliance for the 36mm period undulator currently at 13ID-E (black) with that for a 30mm period undulator and the proposed MBA lattice upgrade to the APS giving the same nominal energy range of 2.3 to 30 keV (blue).