Uncertainties in Scaling Up Crop Models for Large Area Climate Change Impact Assessments

Frank Ewert1, Lenny van Bussel1,
Daniel Wallach2, Gang Zhao1, Holger Hoffmann1, Christian Klein3, Christian Biernath3, Florian Heinlein3, Fulu Tao4, Reimund Rötter4, Davide Cammarano5, Senthold Asseng5, Joshua Elliott6, Michael Glotter6 and Bruno Basso7

1University of Bonn, Germany
2INRA, France
3Helmholtz Zentrum München – German Research Center for Environmental Health
4MTT Finland
5University of Florida, USA
6University of Chicago and Argonne National Lab, USA
7Michigan State University, USA
Outline

- Introduction (crop modelling and uncertainty)
- Methods of up-scaling
- Selected results
 - AgMIP regional scaling pilot
 - Other studies (Finland, MACSUR)
- Concluding remarks
Introduction

Crop system model

Model
(crop growth and development)

Sources of uncertainty

Input data
- Climate, soil, management
- Genetic characteristics

Model
- Structure
- Parameters

Output data
- Post processing
- Observations

Scaling method
- Input data
- Model
- Output data
Introduction

Scaling and uncertainty

Crop and higher level systems

Region and higher level

Scaling method
- Input data
- Model
- Output data

Field level

Productivity (region)

Productivity (crop)
Scaling methods

Scaling of input data (selection)

- **High resolution simulation for all points in the region** = ‘True’ value

- **Sampling of region** = ‘Averaged’ value

- **Aggregation of data to strata or grid cells** = ‘Aggregated’ value

Modified from Ewert et al, 2011
Results (sampling)

The region in Germany (North Rhine-Westphalia)
Results (sampling)

The scaling method

High resolution simulation for all points in the region (ca. 34000 grids with 1 km x 1 km) = ‘True’ value

Stratified sampling = ‘average’ value
- 50 points
- 100
- 500
- 1000
Results (sampling)

The models

<table>
<thead>
<tr>
<th>Model</th>
<th>Potential yield</th>
<th>Water-limited yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCWLA</td>
<td>Early Nov</td>
<td>Yes</td>
</tr>
<tr>
<td>NWheat</td>
<td>Yes</td>
<td>Early Nov</td>
</tr>
<tr>
<td>pDSSAT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SALUS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SIMPLACE <LINTUL></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SPASS</td>
<td>Not possible</td>
<td>Yes</td>
</tr>
<tr>
<td>APSIM</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DSSAT</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>STICS</td>
<td>later</td>
<td>later</td>
</tr>
</tbody>
</table>
Results (sampling)

The results (spatial pattern), one model
Results (sampling)

The results, observed (1999-2011)

Temporal variability

Mean observed Yield (1999-2011)
Results (sampling)

The results (temporal pattern), different sampling points, one model

Potential yield

Water-limited yield
Results (sampling)

The results (temporal pattern), different sampling points

Potential yield

Water-limited yield
Results (sampling)

The results (effect of sampling), one model

Expectation for MSE E(MSE)

\[
E(MSE_{n_1,n_2,n_3,n_4}) = \text{bias}(\hat{y})^2 + \sum_{i=1}^{4} w_i^2 \text{var}(\hat{y}^{* s_i}) / n_s
\]

\(\hat{y}\)... estimated average yield
\(w\)... area weight of region
\(\text{var}^{*}(\hat{y}^{* s})\)... Variance
\(s\)... stratum
\(n\)... number of points in stratum
\(t\)...
Results (sampling)

The results (effect of sampling), different models

![Graph showing different models with all grid cells and a sample size of 100](image)
Results (sampling)

The results (effect of sampling), different models, different weather variables
Results (aggregation, selected example MACSUR)

Comparison of:
• Data aggregations
• Models
• Output data types

Example Germany (NRW)

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Average precipitation (1981-2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 km</td>
<td>> 1300 mm < 600 mm</td>
</tr>
<tr>
<td>10 x 10 km</td>
<td></td>
</tr>
<tr>
<td>25 x 25 km</td>
<td></td>
</tr>
<tr>
<td>50 x 50 km</td>
<td></td>
</tr>
<tr>
<td>100 x 100 km</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of:
- Data aggregations
- Models

1 Station
10 x 10 km
20 x 20 km
50 x 50 km
100 x 100 km

Angulo et al, 2012
Concluding remarks

- Relatively small effect of sampling size (and aggregation)
- Large differences among models
- Interaction between required sample size and model
- Next
 - Spatial variability in soils and management
 - More on effect of aggregation (grid cells)
 - Other regions, crops, output variables (MACSUR)
Uncertainties in Scaling Up Crop Models for Large Area Climate Change Impact Assessments

Frank Ewert1, Lenny van Bussel1,
Daniel Wallach2, Gang Zhao1, Holger Hoffmann1, Christian Klein3, Christian Biernath3, Florian Heinlein3, Fulu Tao4, Reimund Rötter4, Davide Cammarano5,
Senthold Asseng5, Joshua Elliott6, Michael Glotter6 and Bruno Basso7

Thank You
Results (sampling)

The results (spatial pattern), different models

Potential

Model 1

Model 2

Model 3

Water-limited

Model 1

Potential

Model 4

Model 5

Model 6

Water-limited

Model 4

Model 5

Model 6
Results (sampling)

The results (temporal pattern), different sampling points, different models

Potential yield

Water-limited yield
Comparison of:
• Input vs. Output aggregations
• With observations

Results (aggregation)