Rotational Grazing Systems Using Phenological Stage in Kikuyu Grass (*Kikuyocloa clandestina*)

Susana A. Cascante S.,1 Luis A. Villalobos V.1,2

1 Universidad de Costa Rica, 2 Centro de Investigación en Nutrición Animal (CINA)

Introduction

- Rotational grazing systems should ensure that pastures have high nutritive value to meet the requirements of livestock and reduce the use of supplements.
- Water soluble carbohydrates are the primary source of energy that allow pasture regrowth after harvest.
- When pastures mature beyond an ideal phenological stage, young leaves continue to grow and the oldest leaves senesce, reducing the nutritive value of the forage (Fig. 1).

Materials and Methods

- **Objective**

 To evaluate the yield and nutritional value of Kikuyu grass with a phenological stage of 4 green leaves per tiller in a dairy farm in the highlands of Costa Rica.

- **Location**: Alajuela (1900 masl), Costa Rica, from July 2016-January 2017
- **Treatments**: pastures with 10, 15, 20, 25, and 30 d of regrowth, turning cows into paddocks with 4 leaves/tiller
- **Response variables**: dry matter yield (DMY), crude protein (CP), neutral detergent fiber (aNDF), in-vitro dry matter digestibility (IVDMD), and fiber digestibility (NDFD)
- **First two months** (transition stage) adjusting from previous grazing management (30 d of regrowth), aimed at reducing senescent material (Fig. 2).
- **Next five months** (experimental stage) grazing pastures at an average of 25 d of regrowth.

Results

- Days of regrowth and # of green leaves are correlated (Fig. 3).
- Pearson correlation coefficients: dry season (0.77; p=0.0014) and rainy season (0.48; p=0.0001)
- During the experimental stage, biomass was lower (p=0.0610), whereas # of green leaves was higher (p=0.1076) (Fig. 4).

- Protein content was greater (p=0.0056) during the experimental stage, but fiber content did not differ between stages (p=0.1422) (Fig. 5).
- Dry matter (p=0.0569) and fiber (p=0.0689) digestibilities tended to be greater during the experimental stage (Fig. 6).

Implications

- We recommend reducing senescent material to foster greater utilization in pastures prior to use of phenological stage criteria.
- Kikuyu grazed at 4 leaves/tiller in the rainy season generates a forage surplus that can be preserved (as silage or haylage) for the dry season.
- Kikuyu grass exhibited lower yields during the experimental stage, but its exceptional nutritive value may still reduce the use of supplements in dairy cattle operations.

Acknowledgements

The authors would like to thank the Cooperative Dos Pinos R.L. for funding this research as well as the owner of the farm, Anthony Harrington, and the technician, Luis Noguera, for their valuable input during this study.