Graduate students and S.C.S. trainees will be assigned to parties in which training will be most helpful.

Paul Veale, formerly of the Indiana and Illinois Soil Survey Staffs, now farming near Mexico, Missouri, has recently returned from a 2 months winter stay in the Dominican Republic where he was engaged in classifying and mapping the soils on some of the larger sugar cane plantations. This was one of a number of winter visits Paul has made to the island during the past several years for the same purpose.

As a result of his work a considerable saving is being realized by the plantation owners due to a more selected use of fertilizer according to soil type.

SOIL MAPPING IN THE SHADOW OF THE NEW MADRID EARTHQUAKE

The first chilly air of October came rolling over Crowley's ridge into the Delta area of Southeast Missouri last week, as I was hurrying to finish the soil survey of a farm in the lowlands. With it came a clap of thunder and a dark rolling cloud. The fact that this was the area of the last major earthquake in Missouri came to mind. Probably the dark cloud and the rolling thunder brought the earthquake to mind, or perhaps the especially complex pattern of the soils that I had been trying to map brought it to mind. When a soil scientist encounters subsoils on top of old surface soils and sands, silts, clays and even gravel mixed together in a heterogenous mass, he rather feels that some giant hand had stirred the materials much as a child mixes the ingredients for mud pies. The history of the New Madrid earthquake is a ready excuse used liberally by Soil Scientists in this area as blame for the mixed soil pattern.

Most people in thinking of the New Madrid earthquake, only think of one quake. Actually it was a series earthquakes starting December, 1811 and continuing through May 5, 1812. There was recorded through this period some 1,847 shocks of various intensities ranging from light to violent shocks or tremors.

Another erroneous conclusion is one in the association of the name given to the earthquake. The quake covered a very large area in Missouri, Arkansas, and Tennessee. Severe shocks were recorded in Louisville, Kentucky and Cincinnati, Ohio during the disturbance.

The quakes were probably one of the most severe series in the history of man in relation to area covered and time involved.

Today in traveling through this area it is hard to find observable positive reminders of the quake unless one knows what he is looking for. In parts of the area southeast of Kennett and west of Blythesville, Arkansas, lies a large body of land known as Big Lake Area. This was formed by the quake which resulted in the land sinking below the level of surrounding areas and becoming a swamp, parts of which are now reclaimed as agricultural land, and the remainder is now in Big Lake Wildlife Refuge.

West of Caruthersville, Missouri in a line running from south to north is another area of depressional soils, predominantly fine textured clays. This belt of land is full of sand spots or boils, which were formed by the quake. If the area were observed from the air or