of Japanese soils have a value of pH below neutral, because of the humid climatic conditions, with an annual average rainfall of about 60 inches.

3) Water relations of paddy fields. In Japan there are 2 kinds of paddy fields with respect to water relations, namely wet and dry paddy fields. The former are fields which are influenced by high water table the year around. In such fields, upland crops such as barley and vegetables cannot be cultured after the harvest of paddy rice plants. The latter, the dry fields are on well-drained soils, which can be cultivated twice in a year. The map showing distribution of wet and dry paddy fields has been published and indicates that wet paddy fields occupy somewhat less area than the dry paddy fields.

4) Soil management. As an aid to increasing production and to conserving the soil, intensive surveys and research are being carried out with respect to chemical, physical and microbial properties of soils in various regions, which were selected according to an agreed upon priority list.

5) Survey of soils of low productivity. Volcanic ash soils, degraded paddy rice soils, and soils of other unfavorable nature, found in many regions, are picked out as objects of special study.

6) Survey of range soils. Survey of range lands, both actual and potential, is in an advanced stage as to soil classes designations, soil profile descriptions, delineations of water-holding capacity, pH, exchange acidity, hydrolytic acidity, degree of saturation, exchangeable bases, contents of nitrogen, of humus, of available K and P, vegetation, relationship between water content and degree of slope, seasonal change in water content, etc.

Besides the survey by the Ministry of Agriculture, above described, agricultural experiment stations of every prefecture, and universities of agriculture are surveying soils in detail. And every district, city, town and village also are, in addition, carrying out a more minute survey of small tracts of land and of individual farmer's fields.

Special problems of Japanese soils are studied by the Ministry of Agriculture, agricultural experiment stations, and universities.

COVER PICTURE

Professor George J. Buntley responded to a request for an "old style—new style" picture with the interesting "Yesterday—Today" drawing on the front cover. George is on the faculty in the Dept. of Agronomy at South Dakota State College in Brookings.

A FORMER MIDWESTERNER LOOKS AT THE SOILS OF HAWAII

There was a time when I thought all soils were pretty much alike; then soon after I started with the Soil Conservation Service, some 10 years ago, I found there was a lot of not so easily noticeable differences and variations.

The color, structure, consistency, and relative amounts of sand, silt, and clay accounted for most of the differences in the soil. Generally speaking, wet soil varied from dry soil only in amount of water in it. Variations in slope entered into the picture and generally the steeper slopes were more erodible. Soil depth and drainage were some other soil characteristics that were observed. In time, I learned that soils could be classified very readily into various groupings for conservation planning. All in all I thought I had the general picture pretty well in mind.