Subsidence, although minimal, is occurring. The loss is much less than in other organic soil areas, where fiber content is higher and soil reaction is more conducive to biological activity.

Literature Cited


Jongedyk, H. A. 1951. Methods and effects of maintaining different water table levels in muck soil. USDA and Purdue Univ. Agric. Exp. Stn. (processed).


Soil Morphology and Mapping Course Proves Popular at University of Maine

J. A. Ferwerda¹

In the spring of 1976 the University of Maine at Orono (UMO) first offered its new practical course Soil Morphology and Mapping. The course, primarily for students majoring in soils, forestry, and related natural science fields, was designed to supplement UMO courses in general soils, forest soils, soil taxonomy, and land use planning. It was first offered as a 3-credit course in the Continuing Education Division.

The class was scheduled for the 3-week interim period between the end of spring semester and the beginning of summer session. This seemed the best time to offer the course because many students had just completed the soil taxonomy course and the Maine snow-and-mud season was over. Also, at that time of year, most soils in Maine have ideal moisture content for field study.

The 3-week course, limited to 20 students, consisted of five 8- to 10-hour days each week and was evenly divided between soil morphology and soil mapping. R. V. Rourke, UMO Associate Soil Scientist, taught soil morphology, and the author taught soil mapping.

During the soil morphology segment, students learned to read color, determine texture, recognize and measure soil horizons, and describe consistency, structure, rooting depth, coarse fragments, pores, and other soil features. Students generally worked in pairs. Each day, the instructor met with each pair at least once in the morning and once in the afternoon. Students were required to describe 10 pedons and write them up in estab-

¹ State Soil Scientist, USDA-SCS, Orono, Maine.