corrective measure (CM) index as required by the standard procedure for deriving soil potential. Variations in cost or difficulty would need to be quantified by kind of soil. Ratings developed using the corrective measure index would have greater practical value. We are attempting to compile the data needed.

The procedure described in this paper is being reviewed in SCS at present.

Soil Potentials for Septic Tank Absorption Fields

Bobby J. Ward

In the Atlantic Coastal Plain of South Carolina the use of on-site sewage disposal systems are used by urban and rural homeowners alike. The area is, as the name implies, coastal in nature and is associated with water.

The soils are primarily of marine and fluvial origin. They range from sloping well-drained, rapidly permeable sands to nearly level, very poorly drained, very slowly permeable clays. Many of the soils in this area have seasonal water tables on or near the surface during the winter and spring months for long periods at a time.

Permeability of the soils further limits many of these soils for septic tank absorption fields in that the clayey soils absorb the added water slowly and the sandy soils are poor filters of the effluent. The more sloping areas cause seepage and surfacing of effluent on the lower slopes and into the streams and waterways.

In the low country of South Carolina, soil potentials for septic tank filter fields are especially useful in that it is mainly an agricultural region with farmland and woodland being converted to housing and community development. Much of the land being converted is marginal for farming and timberland, therefore it is more profitable to sell small acreage or subdivide wooded areas for subdivisions, mobile home parks or single lots to prospective builders and homeowners desiring to move to the country from the urban areas. All too often these people are unaware of the soil conditions and the local and state regulations regarding permits for on-site sewage disposal systems. Many lots and acreages are purchased that cannot be used, or the cost to correct the problems are more than the original cost invested in the land.

By using soil potential ratings a prospective buyer cannot only avoid costly soil related problems but can become informed about many of the state and local regulations regarding the issuing of permits.

Cooperation is the Key

In developing soil potentials for septic tank absorption fields it is essential to make it a cooperative effort and not one that appears to be a Soil Conservation Service (SCS) publication or more “government regula-