Crop forecasts for this year show that Brazil will produce 180 million metric tons of grain (including 80 million tons of soybeans), which should place the country as the first tropical “agricultural giant” and the first to challenge the supremacy of the “big five” food exporters in the world (United States, Canada, Australia, Argentina, and the European Union).

This is no surprise to many, including a group of American soybean farmers who Dr. Thomas Jot Smyth (Tropical Soils Program Leader at North Carolina State University) told me in 1980 visited some Brazilian soybean farms and exclaimed:

“Even without a good infrastructure of roads, government subsidies, and detailed soil surveys, Brazil is now the third largest global producer of soybeans. When they have all the facilities, as we do on our premises, we will go bankrupt.”

Once the full development of the required infrastructure is in place, Dr. S.W. Buol, who visited Brazil several times and was my main adviser during my Ph.D. program in the Department of Soil Science at NCSU, believes its role in global food production will increase even more:

“The lack of large-scale soil maps is my biggest concern about the efficiency of soil surveys in Brazil, and [this article] relates my viewpoint for this status of knowledge about our soils.”

Igo Fernando Lepsch is a retired soil scientist from Instituto Agronômico de Campinas, SP, Brazil, and a visiting professor at the Universidade Federal Rural do Rio de Janeiro, RJ, Brazil.

Before 1960, no farming or intensive grazing took place in the Cerrado, and with a very low population density, the land cost was cheap and the main agricultural usage was as extensive pasture for bovines. Progressively, more experienced farmers from south of Brazil moved into the area, bringing commercial farming practices and grain production. The uniform temperatures and the dry season allowed for ideal conditions for sowing and harvesting the grain over extended periods of time, resulting in maximum efficiency of machinery operations and reducing time and cost to dry the harvested grain. In these lands, two cycles of crops per year are possible, even without irrigation if no-till systems—now a common practice—are used. Field experiments testing recommendations for liming and fertilizers were established shortly after the new capital, Brasilia (D.F.), was built in the center of the Cerrado region, in the 1960s. Since the beginning of modern agriculture in this frontier region, farmers always had assistance for soil chemical testing, nitrogen biological fixation techniques, applica-

Status of Soil Surveys and Demand for Soil Series Descriptions in Brazil

Igo Fernando Lepsch