of each horizon, dried and weighed. Salts were determined in saturation extracts and calculated on the oven dry weight of soil. Clay skin volumes were determined by measuring proportionate areas on projections of numerous thin sections. Clay content was determined using the hydrometer method described by Day.

Although the data are not complete enough to establish a basis for making any positive statements, it is interesting to observe that during the growing season soluble salts appear to have moved; (1) to the surface, probably in response to evaporation and (2) to the B₂ and C₁ horizons, probably because of the higher root concentration in those horizons.

* * * * *

PEDOLOGICAL RECORD OF THE QUATERNARY

The last million years, or the Quaternary, have seen the development of most of our soils, according to James Thorp in the lead article in a recent symposium issue on the topic of this little article. The symposium is in SOIL SCIENCE (99;1), January, 1965, which can be bought for $1.50 from the Amer. Society of Agronomy office at 677 South Segoe Road, Madison, Wisconsin 53711. Other articles besides the one by Dr. Thorp are: "Climate as a factor of soil formation through the Quaternary", by C. G. Stephens (Australian pedologist); "Clay transformations in soil genesis during the Quaternary", by M. L. Jackson (Univ. of Wis.); "Relation of fluctuations of sea level to soil genesis in the Quaternary", by R. V. Ruhe (SCS); "Characteristics and genesis of patterned ground in Wisconsin time in a Chestnut soil zone of southern Idaho", by M. L. Fosberg; "Present soil-forming factors and processes in arctic and alpine regions", by J. L Retzer (USFS); "Present soil-forming factors and processes in arid and semiarid regions", by S. W. Buol; "Present soil-forming factors and processes in tropical and subtropical regions", by J. M.