north of West Palm Beach, during the winters while still maintaining his residence in College Park. His accommodating manner and his wealth of first-hand knowledge of the area will be missed. It is, indeed, an end of an era for Maryland and Delaware.

* * * *

(The following article is reprinted, with permission, from "Frontiers of Plant Science", Connecticut Agricultural Experiment Station, Fall, 1967. We thought that soil scientists would be interested. -- Ed.)

PLANTS SPEED FORMATION OF SOIL

Brij L. Sawhney
Connecticut Agricultural Experiment Station
New Haven

The soil mantle of the earth provides a vast and changing spectacle which we cannot resist investigating. In addition, the soil is our principal means of sustenance. This lends importance and even urgency to learning how plants feed upon the soil and how the soil is changed by their feeding.

Of the mineral components in the soil, clay is the most important because it stores most of the plant nutrients and holds much of the water. In Connecticut, this clay is predominately vermiculite that is formed by the weathering and expansion of mica in the bedrock. A small speck of unweathered mica may contain several thousand mica units, each consisting of a layer of alumina sandwiched between two layers of silica. These units are negatively charged and have cavities in their surfaces. Positively-charged potassium ions fit into these cavities, and hold the units together in a mica particle.

When the mica is weathered, the potassium ions are replaced by hydrated ions such as calcium, and the negative charge on its surfaces is decreased by several chemical