This country is most fortunate in having an established scheme of soil classification which has been in effect and has been applied on actual surveys throughout all parts of the country during a considerable number of years. It is also fortunate in that the scheme is flexible and applicable to all degrees of detail and to all scales of field mapping.

It is but logical, therefore, that this system of soil classification should be incorporated in any scheme for evaluating the dominant factors which affect land use, whether for purposes of land classification or for the direct utilitarian purpose of developing soil conservation measures.

When the Soil Erosion Service (later the Soil Conservation Service) launched the first soil conservation projects, it was necessary to establish principles and to develop procedures to attain the desired objectives. At the very outset, it was adopted as a cardinal principle of the organization that soil conservation plans should be predicated upon an inventory of those factors which are of dominant importance in land use. Since these conservation plans had to be made for each field within the project area and had to conform to variations in conditions which would affect the conservation plans even within a field, it was essential that the inventory of the dominant factors affecting land use be recorded in place. Thus, when the survey of any project area is completed, whether 25,000 or 200,000 acres, the conditions of any one factor can be summarized for the area as a whole, or can be analyzed in relationship to each other, or to all other factors. The analyses of these conditions can in turn be correlated with farm management surveys or other farm studies.

The factors which are considered to be of dominant importance in soil conservation, and hence, the ones shown by the inventory, listed in the order in which they will be discussed hereafter, are as follows: (1) soil type; (2) present land use or ground cover; (3) slope; and (4) character and degree of erosion.

Since these four factors for each field, and usually for different parts of one field, it is necessary to lineate upon a large-scale map, each and every area within which any one of the four factors varies. This entails the construction of large-scale accurate base maps. It has been found that the most satisfactory base maps upon which to show the detail desired are aerial surveys, particularly since recent show much of the information desired.