
This book represents an updated and considerably expanded version of the editors' original book, Degradation of Herbicides. It consists of two volumes; the first of which is devoted to analytical methods that are applicable to analysis of a variety of types of samples. Although the price of the book will limit purchases for individual collections, the volume would be a welcome addition to institutional libraries and would be a useful reference source for undergraduate or graduate level courses concerned with chemical analysis of soil, plant, or water samples. —L. E. Sommers, Department of Agronomy, Purdue University, West Lafayette, IN 47907.

Physical and Chemical Characteristics of Aquatic Humus

According to the author this volume compiles the useful knowledge of aquatic humus since 1962 and "focuses on the water-soluble humus fraction and the numerous aspects that emphasize the potential role of humus in water research." The book is organized in a logical fashion, beginning with several chapters on the origin and formation of aquatic humus. Throughout the book, primary emphasis is given to the properties, characteristics, and analysis of aquatic humus. A chapter at the end of the book describes methods for removal of humus from water. This last chapter seems to be added as an afterthought rather than a portion of the original text. Throughout, numerous references are made to similarities and differences of soil organic matter and aquatic humus.

The chapters are very easy to read, are REFERENCES, and are certainly helpful but definitely not exhaustive on the subject matter. Many helpful references come from European literature that may be unknown to organic matter or water chemists in North America. Many figures, diagrams, and tables illustrate techniques or important points and greatly facilitate reading. Much of the work presented is the author's research. This fact is noted by the numerous references to molecular weight separation by gel filtration and ultramembrane filtration.

The book is not meant to be an exhaustive text on aquatic humus but rather a summarization with specific research examples noted. Numerous editorial errors detract from the otherwise easily read text. References with 1973 and 1974 dates are cited, indicating the book is up-to-date.

This reviewer considers the book to be a useful summary of the current knowledge of aquatic humus. The book will be of value for soil organic matter and water chemists. —J. O. Volk, Soil Science Department, University of Florida, Gainesville, FL 33711.

The Chemistry and Microbiology of Pollution

The avowed purpose of the authors in writing this book was to acquaint undergraduate and postgraduate students with a broad and comprehensive view of the chemistry and microbiology of pollution. Their aim was excellent as this book will provide that particular audience with an overview of the most important problems that we see today in the fields of degradation and dissolution of pollutants. For the more serious student, postdoctoral students, or research worker, the authors provide a list of recommended readings in the more detailed and concise books which are available. The specialist, or research scientist, will not find a great deal to help him in his chosen field, but the book will be useful to them in the regard that they may find a broadness of view and interrelationship contained therein that is normally seen in textbooks. I especially enjoyed and appreciated the authors' failure to "view with alarm" the ubiquitous dispersal and distribution of the various pollutants discussed and their efforts to show that the final degradation products can and do fit into the ultimate scheme of nature.

The book reviews the chemistry and microbiology of pesticides, sewage and fertilizers, hydrocarbons, surfactants, synthetic polymers, metals, and a chapter on miscellaneous pollutants which includes radioactivity, thermal, and air pollution. In the chapters on pesticides, there are some very general statements that would be acceptable only in a book of this type, such as, "Parathion itself is highly toxic to mammals"; but except for a