About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in SSSAJ

  1. Vol. 45 No. 2, p. 231-236
     
    Received: May 23, 1980
    Accepted: Oct 27, 1980


 View
 Download
 Alerts
 Permissions
Request Permissions
 Share

doi:10.2136/sssaj1981.03615995004500020001x

Effects of Soil Properties, Water Content, and Compactive Effort on the Compaction of Selected California Forest and Range Soils1

  1. Richard F. Howard,
  2. Michael J. Singer and
  3. Gregory A. Frantz2

Abstract

Abstract

Soil compaction reduces plant growth in a variety of settings. In forest and range sites, amelioration of a compacted soil is usually impractical, therefore, emphasis has been given to minimizing and preventing compaction. To provide information on inherent soil compactibility, important factors related to susceptibility to compaction were identified by multiple linear regression of soil physical and chemical properties on Proctor maximum dry bulk densities. The following equation was derived:

Db = 1.91 − 0.0596 C − 0.0076 Wl + 0.0019 S + 0.0058 Fe, where Db = maximum dry bulk density in g/cm3, C = organic C content, Wl = water content at liquid limit, S = total sand, and Fe = dithionite Fe. The equation has an adjusted R2 of 98.6% and Sy,x = 0.0356.

With the use of organic C content, Proctor densities, and normalized change in porosity after compaction as criteria, the 14 soils were ranked by relative susceptibility to compaction. The three criteria produced virtually the same groupings of soils, with the four range soils in the study being most compactible.

Moisture content and compactive effort, which can be controlled, are important factors influencing soil compaction. To further understand the compaction behavior of these forest and range soils, six representative soils of different textural characteristics were subjected to Proctor compaction, with 30, 50, and 100 blows at three to four moisture contents ranging from field capacity to 15% less than field capacity. Density increased significantly with each increase in compactive effort, and maximum values were reached near the optimum moisture content of the standard compaction treatment.

Analysis of moisture characteristic curves for 14 forest and range soils suggests that two range soils would occur in the field at water contents making them susceptible to puddling. About half the soils would remain at near optimum water contents for compaction for a long period of time under field conditions.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © . Soil Science Society of America