About Us | Help Videos | Contact Us | Subscriptions
 

Members of ASA, CSSA, and SSSA: Due to system upgrades, your subscriptions in the digital library will be unavailable from May 15th to May 22nd. We apologize for any inconvenience this may cause, and thank you for your patience. If you have any questions, please call our membership department at 608-273-8080.

 

Institutional Subscribers: Institutional subscription access will not be interrupted for existing subscribers who have access via IP authentication, though new subscriptions or changes will not be available during the upgrade period. For questions, please email us at: queries@dl.sciencesocieties.org or call Danielle Lynch: 608-268-4976.

Abstract

 

This article in SSSAJ

  1. Vol. 56 No. 4, p. 1015-1022
     
    Received: Mar 12, 1991


    * Corresponding author(s):
 View
 Download
 Alerts
 Permissions
Request Permissions
 Share

doi:10.2136/sssaj1992.03615995005600040003x

Depth Profiles of Electrical Conductivity from Linear Combinations of Electromagnetic Induction Measurements

  1. P. G. Cook  and
  2. G. R. Walker
  1. CSIRO Division of Water Resources, Centre for Groundwater Studies, Private Bag 2, PO Glen Osmond, SA 5064, Australia

Abstract

Abstract

Within the past 10 yr, frequency-domain electromagnetic (FEM) induction techniques have become more and more widely used in soil science and hydrology. Each measurement of apparent electrical conductivity represents a depth-weighted average of soil electrical conductivity. However, the depth weighting corresponding to each measurement may be very different from that required by the user. The simultaneous use of multiple measurements (with different depth weightings) should allow some aspects of the depth distribution of electrical conductivity to be inferred. We illustrate a method for obtaining linear combinations of FEM measurements to estimate the soil electrical conductivity within the depth interval of interest. The method relies on the simple fact that the measurement-system response is linear, so that a linear combination of apparent-conductivity readings corresponds to a linear combination of response functions. One can seek a linear combination of response functions that has desirable characteristics. This sets up an optimization problem that can be solved by standard methods, which avoids difficulties encountered with layered inversions to resolve nonlayered systems. The approach was applied to GEONICS EM31, EM34, and EM38 instruments in three examples: (i) single frequency measurements at vertical and horizontal dipole configurations, (ii) frequency measurements using the EM34 at all six possible configurations, and (iii) frequency measurements using the EM38 held at varying heights above the ground. The derived linear combinations were applied to field data from southern Australia. Soil conductivity profiles predicted using linear combinations showed good agreement with profiles measured with a conductivity probe.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © . Soil Science Society of America