About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in SSSAJ

  1. Vol. 59 No. 1, p. 261-265
     
    Received: Sept 24, 1993


    * Corresponding author(s):
 View
 Download
 Alerts
 Permissions
Request Permissions
 Share

doi:10.2136/sssaj1995.03615995005900010041x

Fitting Ammonia Volatilization Dynamics with a Logistic Equation

  1. P. Demeyer,
  2. G. Hofman and
  3. O. Van Cleemput 
  1. Government of East Flanders, Environmental Dep., Krijgslaan 282 S4bis, B-9000 Ghent, Belgium
    Faculty of Agricultural and Applied Biological Sciences, Univ. of Ghent, Coupure Links 653, B-9000 Ghent, Belgium

Abstract

Abstract

To improve the interpretation of the results from NH3-volatilization experiments, the cumulative loss rates for different treatments were fitted to a simple logistic equation. This equation is a function: Y = a(1 − ect)i, with Y the cumulative N loss (%). The first derivative of this function represents the daily volatilization rate and is Y′ = acie−ct(1 − ect)i-1. Important parameters such as the total cumulative loss (a), and the maximum (Rm) and average (Ra) volatilization rates can easily be calculated. In the case of urea applications, an estimation can be made of the time it takes to hydrolyze all applied urea (th). This parameter also corresponds to the lag phase of the cumulative volatilization curve. Parameter i determines the position of the point of inflection of the curve. For values of i between 0 and 1, volatilization rates cannot be adequately calculated. This can be encountered if the initial volatilization rate is very high, e.g., after ammonium sulphate application upon calcareous soils. In this case, volatilization rates will be estimated by fitting the results to a modified logistic equation in which i = 1. This value of i is most common for NH4NO3 application. The best applicability of the logistic equation is with i values > 1. These values are typical for the shape of cumulative volatilization curves obtained on application of urea-containing fertilizers. Possible applications of the logistic equation are illustrated by some experimental results.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © . Soil Science Society of America