DOMESTIC SOURCES OF AGRICULTURAL MAGNESIUM

COLIN W. WHITTAKER AND WILLIAM H. ROSS

THE position of the element magnesium in American agriculture has been in a state of continuous change for many years. The period of change may be said to have started with the World War I which resulted in the cutting off of supplies of German potash salts with their relatively high contents of magnesium. Following the war the German potash salts did not fully regain their lost market in this country, and such salts as were imported were of much lower magnesium content. This change, coupled with the increased use of domestic potash products of low magnesium content and a decided decline in the use of animal manure, organic ammoniates such as cottonseed meal, and other amendments containing magnesium, resulted in magnesium deficiency in many areas where it had not occurred during the time when old-style German potash salts had been used. These changes have been dealt with in detail by Mehring (25).

In the years that followed, calcined kieserite \((\text{MgSO}_4)\), imported from Germany, was used in increasing amounts as a magnesium carrier in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.

In the early part of the last decade increasing use was made of dolomite \((\text{CaCO}_3, \text{MgCO}_3)\) for neutralizing physiological acidity in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.

In the early part of the last decade increasing use was made of dolomite \((\text{CaCO}_3, \text{MgCO}_3)\) for neutralizing physiological acidity in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.

In the early part of the last decade increasing use was made of dolomite \((\text{CaCO}_3, \text{MgCO}_3)\) for neutralizing physiological acidity in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.

In the early part of the last decade increasing use was made of dolomite \((\text{CaCO}_3, \text{MgCO}_3)\) for neutralizing physiological acidity in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.

In the early part of the last decade increasing use was made of dolomite \((\text{CaCO}_3, \text{MgCO}_3)\) for neutralizing physiological acidity in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.

In the early part of the last decade increasing use was made of dolomite \((\text{CaCO}_3, \text{MgCO}_3)\) for neutralizing physiological acidity in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.

In the early part of the last decade increasing use was made of dolomite \((\text{CaCO}_3, \text{MgCO}_3)\) for neutralizing physiological acidity in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.

In the early part of the last decade increasing use was made of dolomite \((\text{CaCO}_3, \text{MgCO}_3)\) for neutralizing physiological acidity in mixed fertilizers, and magnesium deficiencies in many localities were corrected by its use. The magnesium in calcined kieserite is largely water-soluble and is thus readily available.