About Us | Help Videos | Contact Us | Subscriptions

Soil Science Society of America Journal Abstract -

Nitrogen-15 Tracers Combined with Tensio-Neutronic Method to Estimate the Nitrogen Balance of Irrigated Maize


This article in SSSAJ

  1. Vol. 61 No. 5, p. 1508-1518
    Received: Feb 29, 1996

    * Corresponding author(s): georges.vachaud@hmg.inpg.fr
Request Permissions

  1. Béatrice Normand,
  2. Georges Vachaud ,
  3. Sylvie Recous,
  4. Lucas Kengni and
  5. Bernard Garino
  1. Laboratoire d'étude des Transferts en Hydrologie et Environnement (LTHE), (CNRS UMR 5564, INPG, UJF), BP 53 X, 38041 Grenoble, France
    INRA, Unité d'agronomie, rue F. Christ, F-02007 Laon Cedex, France
    Université de Dschang, BP67, Dschang, Republic of Cameroon
    Lycée Agricole, BP 83, 38260 La Côte St André, France



In response to a very high increase of groundwater NO3 pollution, largely connected with intensive agricultural practices, a long-term experimentation has been set up close to Grenoble, France, with the following aims: first to characterize the response of maize (Zea mays L.), a predominant crop in the area, to fertilization, and second to quantify the N balance during and after the crop cycle. This study relates to results concerning the second issue; experiments were conducted on irrigated maize in 1991, 1992, and 1993 on the Experimental Farm at La Côte Saint-André, France, in the heart of one of the most important agricultural zones between the French Alps and the Rhone Valley. The dynamics of soil and fertilizer N (NO3 transport and N balance during cropping and intercropping periods) were continuously monitored using 15N isotopic tracing and the tensio-neutronic method (i.e., continual measurement of soil water balance using a neutron moisture meter and tensiometers), together with porous suction cups installed at 0.3-, 0.5-, and 0.8-m depths. Water drainage and leaching of NO3-N, with a partition between that derived from fertilizer and that produced by soil mineralization, were thus obtained during and after the crop cycle. The balance of the labeled fertilizer at harvest was also determined by conventional soil coring and plant sampling. The two methods were used successfully during the 3 yr in which there were different climatic conditions and different fertilizer application rates. The results show that the traditional fertilizer input in the area (260 kg N ha−1) could be reduced nearly 30% without any substantial loss in grain yield but with a considerable reduction of nonpoint source pollution due to NO3 leaching. It is also shown that with the combined use of the two methods, it is possible to characterize separately fertilizer-N uptake, fertilizer-N leaching, and N immobilization and to estimate N-gaseous losses.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © . Soil Science Society of America